吴伟志,博士,教授,主要研究方向为粗糙集、粒计算、数据挖掘、人工智能.E-mail:wuwz@zjou.edu.cn.
作者简介:
郝婷婷,硕士研究生,主要研究方向为粗糙集、粒计算.E-mail:15339663735@163.com.
谭安辉,博士,教授,主要研究方向为粒计算、不确定性数据处理、智能计算.E-mail:20100@hqu.edu.cn.
针对广义多尺度区间集决策系统中的知识获取问题,提出基于区间集决策熵的最优尺度约简方法.首先,在广义多尺度区间集决策系统中定义含有零尺度的尺度组合的概念,并由不同尺度组合对应的条件属性集构造对象集上的相似关系,以获得相应信息粒的表示.然后,在给定的尺度组合下,定义决策类关于条件属性集的区间下近似、区间上近似、区间近似精度、区间粗糙度的概念,并进一步结合条件熵与区间粗糙度,给出区间集决策熵及其性质.最后,在协调广义多尺度区间集决策系统中定义最优尺度组合、熵最优尺度组合及相应的最优尺度约简的概念,证明两类最优尺度组合概念的等价性、最优尺度约简概念与熵最优尺度约简概念的等价性,并用示例说明最优尺度约简的计算.
Multi-scale Interval-Set Decision Systems
WU Weizhi, Ph.D., professor. His research interests include rough sets, granular computing, data mining and artificial intelligence.
About Author:
HAO Tingting, Master student. Her research interests include rough sets and granular computing.
TAN Anhui, Ph.D., professor. His research interests include granular computing,uncertain data processing and intelligent computing.
To solve the problem of knowledge acquisition in generalized multi-scale interval-set decision systems, an optimal scale reduction method based on interval-set decision entropy is proposed. First, the concept of scale combinations containing zero scales is defined in the generalized multi-scale interval-set decision systems. Then, similarity relations of the object sets are constructed via conditional attribute sets generated by different scale combinations to obtain the representations of corresponding information granules. Next, with the given scale combination, the concepts of interval lower approximations, interval upper approximations, interval approximation accuracy, and interval roughness of the decision classes with respect to the conditional attribute sets are defined. Furthermore, by integrating conditional entropy with interval roughness,the concept of interval-set decision entropy is introduced along with its properties. Finally, in a consistent generalized multi-scale interval-set decision system, the concepts of optimal scale combination, entropy optimal scale combination and corresponding optimal scale reducts are defined. The equivalence between the two concepts of optimal scale combinations and the equivalence between the concepts of optimal scale reduct and entropy optimal scale reduct are proved. The calculation of an optimal scale reduct is illustrated with an example.
粒计算(Granular Computing, GrC)[1, 2, 3]是智能信息处理领域中新的计算范式.“ 粒” (Granule)[4]是粒计算的基本计算单元, 粒计算通过模拟人脑处理复杂问题的多粒度认知机制, 将信息“ 粒化” 成不同层次和粒度的信息粒, 并对数据集进行分析处理和求解, 是复杂问题求解的有效手段之一[5].粒计算自提出以来, 已在大数据挖掘[6, 7]和决策分析[8, 9]等领域呈现出独特优势并获得广泛应用.
迄今为止, 与粒计算相关的基本理论构架与数学模型主要包括粗糙集、商空间、模糊集、云模型、三支决策等[10].其中, 由Pawlak[11]提出的粗糙集数据分析模型是推动和发展粒计算研究的重要方向之一, 该模型以在保持分类能力不变的前提下通过知识约简获得蕴含在数据集上的决策知识为最终目标.经典粗糙集数据分析模型处理的信息系统是一个关于属性与对象的单尺度数据表, 即每个对象属性值仅能取单一值, 难以处理现实中的多尺度数据.为此, Wu等[12]将粗糙集方法引入多尺度数据分析中, 提出针对多尺度数据的Wu-Leung模型, 即多尺度粗糙集数据分析模型, 该模型中每个对象的属性取值在不同的尺度下可以取不同值.在Wu-Leung模型中, 最优尺度选择与属性约简是从数据集上获取决策知识的两个关键环节[13].目前已有很多学者针对区间值数据[14, 15]、集值数据[16, 17]、覆盖型数据[18, 19]、不完备数据[20, 21, 22]等各种多尺度数据类型给出相应的最优尺度选择与属性约简方法.
Wu-Leung模型仅适用于每个属性具有相同尺度个数的数据.为了解决不同属性具有不同尺度个数的知识表示与知识获取问题, Li等[23]对Wu-Leung模型进行推广, 提出广义多尺度粗糙集数据分析模型.近年来, 针对各种广义多尺度数据的最优尺度组合选择与属性约简问题的研究取得大量成果.Wang等[24]给出动态不完备广义多尺度模糊序决策系统的最优尺度选择方法.Wang等[25]提出同时包含数值型、符号型与集值型数据的广义多尺度混合数据的最优尺度组合选择方法.Yang等[26]提出基于遗传算法与p一致性准则的广义多尺度决策系统的最优尺度组合选择方法, 取得较优的分类效果.针对决策也是多尺度的广义多尺度数据的知识获取问题, Zhang等[27]提出两种最优尺度选择算法, 并通过实验验证算法的有效性.朱康等[28]针对协调广义多尺度序模糊决策系统的知识获取问题, 定义基于优势关系的5种最优尺度组合概念, 给出它们之间的关系, 并在信任最优尺度组合的基础上给出属性约简方法.针对广义多尺度形式背景的知识获取问题, Wang等[29]提出最优尺度选择的优化算法, 分类效果较优.
然而, 针对广义多尺度数据知识获取问题的研究大多将最优尺度组合选择与属性约简分为两个独立步骤依次进行, 这种做法的缺点是计算代价较大、效率较低.为了提高知识获取的效率, Cheng等[30]提出最优尺度约简的概念, 其主要思想是尺度组合的定义中可包含零尺度(对应属性未被选用), 在实现搜索最优尺度组合的同时完成属性约简.最近, 基于最小化测试代价, 廖淑娇等[31]提出同步选择属性与尺度, 可同时适用于协调多尺度决策系统算法与不协调多尺度决策系统算法.
熵作为度量不确定性的测度, 最初由Shannon[32]引入信息论中, 近年来被广泛应用于粗糙集数据分析中知识的不确定性描述和各种信息系统中规则提取的量化分析[15, 33, 34, 35].此外, 熵也被用于研究多尺度数据的最优尺度选择与属性约简问题.Bao等[36]在广义多尺度决策系统中使用Shannon熵刻画最优尺度组合的数值特征.针对广义多尺度多重集决策系统, 刘梦欣等[37]提出熵最优尺度约简的搜索算法.Sang等[38]提出基于包含度的可变协调性准则, 并使用模糊粗糙组合熵对多尺度模糊决策系统进行特征选择.
区间集是表示数据不确定性的一个重要工具.早在1993年, Yao[39]就提出可使用区间集代数刻画定性知识, 并讨论区间集与粗糙集和模糊集的联系.区间集通过上、下边界集表示不确定信息, 如文献[40]中使用区间集表示居民对外语的掌握情况:下边界集为已掌握的外语种类, 上边界集为已掌握及可能掌握的外语种类.Yao等[41]将区间集引入粗糙集数据分析中, 提出区间集信息系统的概念.Xie等[42]提出区间集信息系统的属性约简方法.张倚萌等[43]结合区间粗糙度和条件熵, 定义用于度量区间集信息系统中不确定性的复合熵.Liang等[44]提出基于区间集的正域、负域和边界域的相似性测度, 用于多专家多准则决策问题.
然而, 目前研究的区间集数据大多针对单尺度信息系统.最近, Xie等[40]引入修正条件熵和正互补条件熵, 讨论多尺度区间集决策系统中的最优尺度选择与属性约简问题.迄今为止, 尚未涉及对象的属性取值类型为区间集的广义多尺度数据的知识获取问题.为此, 本文提出广义多尺度区间集决策系统的概念, 并借鉴文献[30]的零尺度思想和文献[43]的区间集不确定性度量方法, 引入结合区间粗糙度与条件熵的区间集决策熵, 并定义包含零尺度的尺度组合、(熵)最优尺度组合、(熵)最优尺度约简概念, 研究该类系统的最优尺度约简问题.
文中$\left| X \right|$表示集合X的基数, ¬ X表示集合X关于U的补集, 即
$\neg X=U-X=\left\{ x\in U\left| x \right.\notin X \right\}$.
设U={x1, x2, ···, xn}为一个非空有限对象集, 即论域.记P(U)为U的幂集.本节主要回顾区间集、区间集信息系统和区间集决策熵的概念及相关性质.
定义1[11] 称S=(U, A)为一个信息系统, 其中, U={x1, x2, ···, xn}为论域, A={a1, a2, ···, am}为一个非空有限属性集, 对于∀ aj∈ A, 有aj:U→ Vj, 其中Vj为aj的值域.
称S=(U, A∪ {d})为一个决策系统, 其中, (U, A)为一个信息系统, d∉A为决策, d:U→ Vd, Vd为d的值域.
定义2[39] 设U为一个非空有限集, 若集合Al∈ P(U), Au∈ P(U)且Al⊆Au, 则称A=[Al, Au]为P(U)上的一个区间集, 其中, Al为A的下边界集, Au为A的上边界集.记
$I(U)=\left\{ \left[ {{A}_{l}}, {{A}_{u}} \right]\left| {{A}_{l}} \right., {{A}_{u}}\in \mathcal{P}\left( U \right), \text{ }{{A}_{l}}\subseteq {{A}_{u}} \right\}$
为P(U)上所有区间集构成的集合.
定义3[39] 设U为一个非空有限集,
A=[Al, Au]∈ I(U), B=[Bl, Bu]∈ I(U),
定义
$\begin{align} & \mathcal{A}\sqcap \mathcal{B}=\left[ {{A}_{l}}\cap {{B}_{l}}, {{A}_{u}}\cap {{B}_{u}} \right], \\ & \mathcal{A}\sqcup \mathcal{B}=\left[ {{A}_{l}}\cup {{B}_{l}}, {{A}_{u}}\cup {{B}_{u}} \right], \\ & \mathcal{A}\backslash \mathcal{B}=\left[ {{A}_{l}}-{{B}_{u}}, {{A}_{u}}-{{B}_{l}} \right], \\ \end{align}$
$\neg \mathcal{A}=\neg \left[ {{A}_{l}}, {{A}_{u}} \right]=\left[ U, U \right]\backslash \left[ {{A}_{l}}, {{A}_{u}} \right]=\left[ U-{{A}_{u}}, U-{{A}_{l}} \right]$
定义4[39] 设U为一个非空有限集,
A=[Al, Au]∈ I(U), B=[Bl, Bu]∈ I(U),
若Al⊆Bl且Au⊆Bu, 则称A包含于B, 记作$\mathcal{A}\sqsubseteq \mathcal{B}$.
性质1[39] 设U为一个非空有限集,
A=[Al, Au]∈ I(U), B=[Bl, Bu]∈ I(U),
则
$\begin{align} & \text{1) }\mathcal{A}\sqsubseteq \mathcal{B}\Leftrightarrow \mathcal{A}\sqcap \mathcal{B}=\mathcal{A}\mathcal{A}\sqcup \mathcal{B}=\mathcal{B}\text{, } \\ & \text{2) }\mathcal{A}\sqsubseteq \mathcal{B}\Leftrightarrow {{A}_{l}}\cap {{B}_{l}}={{A}_{l}}{{A}_{u}}\cap {{B}_{u}}={{A}_{u}}, \\ \end{align}$
$3)\text{ }\mathcal{A}\sqsubseteq \mathcal{B}\Leftrightarrow {{A}_{l}}\cup {{B}_{l}}={{B}_{l}}{{A}_{u}}\cup {{B}_{u}}={{B}_{u}}.$
定义5[43] 设U为一个非空有限集,
A=[Al, Au]∈ I(U), B=[Bl, Bu]∈ I(U),
则A、B的相似度定义如下:
S(A, B)=
性质2[43]S(A, B)具有如下性质:
1)0≤ S(A, B)≤ 1,
2)S(A, B)=1⇔ A=B,
3)S(A, B)=S(B, A).
定义6[41] 称S=(U, A)为一个区间集信息系统, 其中, U={x1, x2, ···, xn}为论域, A={a1, a2, ···, am}为一个非空有限属性集, 且对于∀ aj∈ A, 有aj:U→ I(Vj), 其中, Vj为aj的值域.
与普通的信息系统不同, 区间集信息系统中对象的属性值都是区间集, 即对于∀ x∈ U, 若设
$C_{j}^{lower}\left( x \right)\subseteq C_{j}^{upper}\left( x \right)\subseteq {{V}_{j}}$,
因此aj(x)可表示为
${{a}_{j}}(x)=\left[ C_{j}^{lower}\left( x \right), C_{j}^{upper}\left( x \right) \right]\in I\left( {{V}_{j}} \right)$.
定义7[43] 设S=(U, A)为一个区间集信息系统, 对于∀ B⊆A, a∈ B, 给定一个阈值δ ∈ [0, 1], 则由a和δ 确定的相似关系
$R_{a}^{\delta }=\left\{ \left. \left( x, y \right)\in U\times U \right|S\left( a(x), a(y) \right)\ge \delta \right\}$,
由B和δ 确定的相似关系
$R_{B}^{\delta }=\left\{ \left( x, y \right)\in U\times U\left| S \right.\left( a(x), a(y) \right)\ge \delta , \forall a\in B \right\}=\underset{a\in B}{\mathop{\bigcap }}\, R_{a}^{\delta }$,
记x关于
$\left[ x \right]_{B}^{\delta }=\left\{ \left. y\in U \right|\left( x, y \right)\in R_{B}^{\delta } \right\}$,
记由
${U}/{R_{B}^{\delta }}\; =\left\{ \left. \left[ x \right]_{B}^{\delta } \right|x\in U \right\}$.
定义8[43] 称S=(U, A∪ {d})为一个区间集决策系统, 其中, (U, A)为一个区间集信息系统, d∉A为决策, 且d:U→ Vd, Vd为d的值域.
由d导出的等价关系定义为
${{R}_{d}}=\left\{ \left( x, y \right)\in U\times \left. U \right|d\left( x \right)=d\left( \text{y} \right) \right\}$,
不妨设Vd={1, 2, ···, t}, 则Rd将U中对象粒化为互不相交的等价类, 它们构成U的一个划分:
${U}/{{{R}_{d}}}\; =\left\{ \left. {{\left[ x \right]}_{d}} \right|x\in U \right\}=\left\{ {{D}_{1}}, {{D}_{2}}, \cdots , {{D}_{t}} \right\}$,
其中
${{D}_{k}}=\left\{ y\in U\left| d\left( y \right)=k \right. \right\}, $, k∈ {1, 2, ···, t}.
进一步地, 若
定义9[43] 设S=(U, A∪ {d})为一个区间集决策系统, U/Rd={D1, D2···, Dt}, B⊆A, δ ∈ [0, 1], 则d关于B和δ 的区间下近似与区间上近似分别定义如下:
$\underline{R_{B}^{\delta }}({U}/{{{R}_{d}}}\; )=\underset{1\le k\le t}{\mathop \bigcup }\, \underline{R_{B}^{\delta }}({{D}_{k}})$,
$\overline{R_{B}^{\delta }}({U}/{{{R}_{d}}}\; )=\underset{1\le k\le t}{\mathop \bigcup }\, \overline{R_{B}^{\delta }}({{D}_{k}})$,
其中
$\begin{align} & \underline{R_{B}^{\delta }}({{D}_{k}})=\left\{ x\in \left. U \right|\left[ x \right]_{B}^{\delta }\subseteq {{D}_{k}} \right\}, \\ & \overline{R_{B}^{\delta }}({{D}_{k}})=\left\{ x\in \left. U \right|\left[ x \right]_{B}^{\delta }\bigcap {{D}_{k}}\ne \varnothing \right\}, \\ & k\in \left\{ 1, 2, \cdots , t \right\}.\end{align}$
d关于B和δ 的区间近似精度与区间粗糙度分别定义如下:
$\alpha _{B}^{\delta }\left( {U}/{{{R}_{d}}}\; \right)=\frac{\sum{_{{{D}_{k}}\in {U}/{{{R}_{d}}}\; }\left| \underline{R_{B}^{\delta }}\left( {{D}_{k}} \right) \right|}}{\sum{_{{{D}_{k}}\in {U}/{{{R}_{d}}}\; }}\left| \overline{R_{B}^{\delta }}\left( {{D}_{k}} \right) \right|}$,
$\rho _{B}^{\delta }\left( {U}/{{{R}_{d}}}\; \right)=1-\alpha _{B}^{\delta }\left( {U}/{{{R}_{d}}}\; \right)=1-\frac{\sum{_{{{D}_{k}}\in {U}/{{{R}_{d}}}\; }}\left| \underline{R_{B}^{\delta }}\left( {{D}_{k}} \right) \right|}{\sum{_{{{D}_{k}}\in {U}/{{{R}_{d}}}\; }}\left| \overline{R_{B}^{\delta }}\left( {{D}_{k}} \right) \right|}$.
定义10[43] 设S=(U, A∪ {d})为一个区间集决策系统, U/Rd={D1, D2, ···, Dt}, B⊆A, δ ∈ [0, 1], 则d关于B和δ 的条件熵定义如下:
${{H}^{\delta }}\left( \left. d \right|B \right)=-\sum\limits_{i=1}^{n}{\sum\limits_{k=1}^{t}{\frac{\left| \left[ {{x}_{i}} \right]_{B}^{\delta }\bigcap {{D}_{k}} \right|}{U{{}^{2}}}{{\log }_{2}}\frac{\left| \left[ {{x}_{i}} \right]_{B}^{\delta }\bigcap {{D}_{k}} \right|}{\left| \left[ {{x}_{i}} \right]_{B}^{\delta } \right|}}}$
其中, n为U的基数, t为U/Rd的基数, 约定log20=0.
定义11[43] 设S=(U, A∪ {d})为一个区间集决策系统, B⊆A, δ ∈ [0, 1], 则d关于B和δ 的区间集决策熵定义如下:
$ID{{H}^{\delta }}\left( \left. d \right|B \right)=\rho _{B}^{\delta }\left( {U}/{{{R}_{d}}}\; \right){{H}^{\delta }}\left( \left. d \right|B \right)$.
定义12[23, 30] 称S=(U, A)为一个广义多尺度信息系统, 其中, U={x1, x2, ···, xn}为论域, A={a1, a2, ···, am}为一个非空有限属性集, 且每个aj∈ A都是多尺度属性.若对于aj∈ A, aj具有Ij个尺度, 则一个广义多尺度信息系统可表示为
$\left( U, A \right)=\left( U, \left\{ \left. a_{j}^{l} \right|l=1, 2, \cdots , {{I}_{j}}, j=1, 2, \cdots , m \right\} \right)$,
其中
$a_{j}^{l-1}=g_{j}^{l, l-1}\circ a_{j}^{l}$,
即对于∀ x∈ U, 有
$a_{j}^{l-1}\left( x \right)=g_{j}^{l, l-1}\left( a_{j}^{l}\left( x \right) \right)$,
称
进一步地, 称
$S=\left( U, A\bigcup \left\{ d \right\} \right)=\left( U, \left\{ \left. a_{j}^{l} \right|l=1, 2, \cdots , {{I}_{j}}, j=1, 2, \cdots , m \right\}\bigcup \left\{ d \right\} \right)$
为一个广义多尺度决策系统, 其中, (U, A)为一个广义多尺度信息系统, d∉A为决策, 且d:U→ Vd, Vd为d的值域.
定义13[30] 设S=(U, A∪ {d})为一个广义多尺度决策系统, 对于aj∈ A(j∈ {1, 2, ···, m}), lj∈ {0, 1, ···, Ij}, 若lj=0, 表示删除aj, 进一步地, 若lj≠ 0, 表示aj选择第lj个尺度, 记L=(l1, l2, ···, lm), 则称L为S的一个尺度组合.
记S的尺度组合全体为L, 则每个尺度组合
$L=({{l}_{1}}, {{l}_{2}}, \cdots , {{l}_{m}})\in \mathcal{L}$
对应一个单尺度决策系统SL=(U, AL∪ {d}), 其中
${{A}^{L}}=\left\{ a_{1}^{{{l}_{1}}}, a_{2}^{{{l}_{2}}}, \cdots , a_{m}^{{{l}_{m}}} \right\}$.
本节给出广义多尺度区间集决策系统和该系统下区间集决策熵的相关概念.
定义14 称S=(U, A)为一个广义多尺度区间集信息系统, 其中U={x1, x2, ···, xn}为论域, A={a1, a2, ···, am}为一个非空有限属性集, 每个aj∈ A有Ij个尺度(j∈ {1, 2, ···, m}), 且每个对象在每个尺度下的属性取值均为区间集.这样的一个广义多尺度区间集信息系统可表示为
$S=\left( U, A \right)=\left( U, \left\{ \left. a_{j}^{l} \right|l=1, 2, \cdots , {{I}_{j}}, j=1, 2, \cdots , m \right\} \right)$,
其中
$a_{j}^{l}(x)=\left[ C_{j, l}^{lower}\left( x \right), C_{j, l}^{upper}\left( x \right) \right]\in I(V_{j}^{l})$,
$C_{j, l}^{lower}\left( x \right)\subseteq C_{j, l}^{upper}\left( x \right)\subseteq V_{j}^{l}$.
并且对于j∈ {1, 2, ···, m}, l∈ {2, 3, ···, Ij}, 存在两个满射, 其中一个是信息粒度变换
即
另一个是信息值的变换
使得对于∀ x∈ U有
$\begin{align} & a_{j}^{l-1}\left( x \right)=\gamma _{j}^{l, l-1}\left( a_{j}^{l}\left( x \right) \right) \\ & =\gamma _{j}^{l, l-1}\left( \left[ C_{j, l}^{lower}\left( x \right), C_{j, l}^{upper}\left( x \right) \right] \right) \\ & =\left[ g_{j}^{l, l-1}\left( C_{j, l}^{lower}\left( x \right) \right), g_{j}^{l, l-1}\left( C_{j, l}^{upper}\left( x \right) \right) \right] \\ & =\left[ \left\{ g_{j}^{l, l-1}(v)|v\in C_{j, l}^{lower}\left( x \right) \right\}, \left\{ g_{j}^{l, l-1}\left( w \right)|w\in C_{j, l}^{upper}\left( x \right) \right\} \right] \\ & =\left[ C_{j, l-1}^{lower}\left( x \right), C_{j, l-1}^{upper}\left( x \right) \right]. \end{align}$
定义15 称
$S=\left( U, A\bigcup \left\{ d \right\} \right)=\left( U, \right.\left\{ a_{j}^{l}\text{ }\!\!|\!\!\text{ }l=1, \right.2, \cdots , $${{I}_{j}}, j=\left. \left. 1, 2, \cdots , m \right\}\bigcup \left\{ d \right\} \right)$
为一个广义多尺度区间集决策系统, 其中, (U, A)为一个广义多尺度区间集信息系统, d∉A为决策, 且d:U→ Vd, Vd为d的值域.
定义16 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统, 对于aj∈ A, lj∈ {0, 1, ···, Ij}, j∈ {1, 2, ···, m}, 若lj=0, 表示删除aj, 进一步地, 若lj≠ 0, 表示aj选择第lj个尺度, 记L=(l1, l2, ···, lm), 称L为S的一个尺度组合.
记S的尺度组合全体为L, 则每个尺度组合
$L=({{l}_{1}}, {{l}_{2}}, \cdots , {{l}_{m}})\in \mathcal{L}$
对应一个单尺度区间集决策系统
${{S}^{L}}=\left( U, {{A}^{L}}\bigcup \left\{ d \right\} \right)$,
其中
${{A}^{L}}=\left\{ \left. a_{j}^{{{l}_{j}}} \right|\text{ }j=1, 2, \cdots , m \right\}$
为A在尺度组合L上的限制.
例如, 若A={a1, a2, a3}, 且L=(2, 0, 1)∈ L, 则AL={
定义17 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统,
L1=(
若对于∀ j∈ {1, 2, ···, m}, 有
定义18 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统, 对于
L1=(
记
L1∧ L2=(
L1∨ L2=(
其中
$l_{j}^{1}\wedge l_{j}^{2}=\min \left\{ l_{j}^{1}, l_{j}^{2} \right\}, \text{ }l_{j}^{1}\vee l_{j}^{2}=\text{max}\left\{ l_{j}^{1}, l_{j}^{2} \right\}, $
$j\in \left\{ 1, 2, \cdots , m \right\}.$
易知, (L, ⪰, ∧ , ∨ )为一个完备格, 最小元为Ll=(0, 0, ···, 0), 最大元为L0=(I1, I2, ···, Im).
以下恒记L0=(I1, I2, ···, Im).
例1 表1 为一个广义多尺度区间集决策系统S=(U, A∪ {d}), 其中, U={x1, x2, ···, x8}表示上海某艺术学校的8名学生, A={a1, a2, a3}, a1表示乐器的演奏能力, a2表示乐器品质的鉴别能力, a3表示乐器相关文化知识的掌握能力.第三个尺度下的属性值D、H、G、F、S分别表示架子鼓、二胡、古筝、笛子、唢呐; 第二个尺度下的属性值Pe、St、Bl分别表示打击乐器、弦乐器、吹奏乐器; 第一个尺度下的属性值W、C分别表示西洋乐器、民族乐器.Vd={0, 1}, d为1表示该学生是音乐特长生, d为0表示该学生不是音乐特长生.
| 表1 一个广义多尺度区间集决策系统 Table 1 A generalized multi-scale interval-set decision system |
例如:表1中
表明学生x3会演奏二胡和古筝, 可能会演奏笛子,
表明学生x3会鉴别弦乐器品质的优劣, 可能会鉴别吹奏乐器品质的优劣,
表明学生x3了解民族乐器的历史发展和文化背景.
属性值域的信息粒度变换如下:
j=1, 2, 3.
系统尺度组合的格结构图1所示.
文中对于∀ aj∈ A, lj∈ {2, 3, ···, Ij}, 假设存在一系列阈值
0≤
同时, 对于∀ L∈ L, 记
${{\delta }^{L}}=\left\{ \left. \delta _{j}^{{{l}_{j}}} \right|a_{j}^{{{l}_{j}}}\in {{A}^{L}} \right\}$
为L对应的阈值集合.
定义19 设
$S=\left( U, A\bigcup \left\{ d \right\} \right)=\left( U, \right.\left\{ \left. a_{j}^{l} \right|l=1, \right.2, \cdots , $${{I}_{j}}, j=\left. \left. 1, 2, \cdots , m \right\}\bigcup \left\{ d \right\} \right)$
为一个广义多尺度区间集决策系统, 对于∀ aj∈ A, lj∈ {1, 2, ···, Ij},
$R_{a_{j}^{{{l}_{j}}}}^{\delta _{j}^{{{l}_{j}}}}=\left\{ \left( x, y \right)\in U\times \left. U \right|S\left( a_{j}^{{{l}_{j}}}(x), a_{j}^{{{l}_{j}}}(y) \right)\ge \delta _{j}^{{{l}_{j}}} \right\}, $,
其中S(
命题1 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统, aj∈ A, lj∈ {2, 3, ···, Ij},
其中
${{\gamma }^{{{l}_{j}}, {{l}_{j}}-1}}=\min \left\{ \underset{\left( x, y \right)\in R_{a_{j}^{{{l}_{j}}}}^{\delta _{j}^{{{l}_{j}}}}}{\mathop{\min }}\, S\left( a_{j}^{{{l}_{j}}-1}(x), a_{j}^{{{l}_{j}}-1}(y) \right), \text{ }\delta _{j}^{{{l}_{j}}} \right\}$
则
证明 对于∀ (x, y)∈
S(
所以
(x, y)∈
即
注1 命题1表明, 同一属性在相邻尺度下导出的对象集上的相似关系关于尺度满足反单调性, 即尺度越大, 对应的二元关系越小.
注2 本文以下讨论中恒假设
其中, lj∈ {2, 3, ···, Ij}, j∈ {1, 2, ···, m}.
例2 (续例1) 设
对于a1, 计算得
$U / R_{a_{1}^{3}}^{\delta_{1}^{3}}=\left\{\left\{x_{1}, x_{4}\right\}, \left\{x_{2}\right\}, \left\{x_{3}, x_{6}\right\}, \left\{x_{5}\right\}, \left\{x_{7}\right\}, \left\{x_{8}\right\}\right\}, $
$\begin{aligned} \delta_{1}^{2}= & \gamma_{1}^{3, 2}= \\ & \min \left\{\min _{\substack{\delta_{1}^{3} \\ (x, y) \in R_{a_{1}^{3}}^{3}}}\left(S\left(a_{1}^{2}(x), a_{1}^{2}(y)\right)\right), \delta_{1}^{3}\right\}=0.5, \end{aligned}$
$U / R_{a_{1}^{2}}^{\delta_{1}^{2}}=\left\{\left\{x_{1}, x_{2}, x_{4}\right\}, \left\{x_{5}\right\}, \left\{x_{3}, x_{6}\right\}\left\{x_{7}, x_{8}\right\}\right\}, $
$\begin{aligned} \delta_{1}^{1}= & \gamma_{1}^{2, 1}= \\ & \min \left\{\min _{(x, y) \in R_{a_{1}^{2}}^{2}}\left(S\left(a_{1}^{1}(x), a_{1}^{1}(y)\right)\right), \delta_{1}^{2}\right\}=0.5, \end{aligned}$
$\begin{array}{r} U / R_{a_{1}^{1}}^{\delta_{1}^{1}}=\left\{\left\{x_{1}, x_{2}, x_{4}\right\}, \left\{x_{3}, x_{5}, x_{6}, x_{7}, x_{8}\right\}, \right. \\ \\ \left.\left\{x_{3}, x_{5}, x_{7}, x_{8}\right\}, \left\{x_{3}, x_{6}, x_{7}, x_{8}\right\}\right\} . \end{array}$
对于a2, 计算得
$U / R_{a_{2}^{2}}^{\delta_{2}^{2}}=\left\{\left\{x_{1}, x_{5}, x_{6}\right\}, \left\{x_{2}, x_{4}, x_{8}\right\}, \left\{x_{3}, x_{7}\right\}\right\}, $
$\begin{aligned} \delta_{2}^{1}= & \gamma_{2}^{2, 1}= \\ & \min \left\{\min _{(x, y) \in R_{a_{2}^{2}}^{\delta_{2}^{2}}}\left(S\left(a_{2}^{1}(x), a_{2}^{1}(y)\right)\right), \delta_{2}^{2}\right\}=0.5, \end{aligned}$
$U / R_{a_{2}^{1}}^{\delta_{2}^{1}}=\left\{\left\{x_{1}, x_{2}, x_{4}, x_{5}, x_{6}, x_{8}\right\}, \left\{x_{3}, x_{7}\right\}\right\} .$
对于a3, 计算得
${U}/{R_{a_{3}^{2}}^{\delta _{3}^{2}}}\; =\left\{ \left\{ {{x}_{1}}, {{x}_{2}}, {{x}_{3}} \right\}, \left\{ {{x}_{4}}, {{x}_{8}} \right\}, \left\{ {{x}_{5}}, {{x}_{6}}, {{x}_{7}} \right\} \right\}, $
$\delta _{3}^{1}=\gamma _{3}^{2, 1}=\min \left\{ \underset{\left( x, y \right)\in R_{a_{3}^{2}}^{\delta _{3}^{2}}}{\mathop{\min }}\, \left( S\left( a_{3}^{1}(x), a_{3}^{1}(y) \right) \right), \delta _{3}^{2} \right\}=0.5, $
${U}/{R_{a_{3}^{1}}^{\delta _{3}^{1}}}\; =\left\{ \left\{ {{x}_{1}}, {{x}_{2}}, {{x}_{3}} \right\}, \left\{ {{x}_{4}}, {{x}_{5}}, {{x}_{6}}, {{x}_{7}}, {{x}_{8}} \right\} \right\}.$
定义20 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统, L=(l1, l2, ···, lm)∈ L, 若存在j∈ {1, 2, ···, m}, 使得lj≠ 0, 则定义由AL和δ L导出的相似关系如下:
$R_{{{A}^{L}}}^{{{\delta }^{L}}}=\left\{ \left( x, y \right)\in U\times \left. U \right|\left( x, y \right)\in R_{a_{j}^{{{l}_{j}}}}^{\delta _{j}^{{{l}_{j}}}}, \forall a_{j}^{{{l}_{j}}}\in {{A}^{L}} \right\}$.
记x关于
$\left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}=\left\{ y\in \left. U \right|\left( x, y \right)\in R_{{{A}^{L}}}^{{{\delta }^{L}}} \right\}$, $x\in U$.
.
记由
${U}/{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\; =\left\{ \left. \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}} \right|x\in U \right\}$.
例3 (续例2) 给定4个尺度组合:
L0=(3, 2, 2) ∈ L, L3=(3, 0, 1)∈ L,
L4=(2, 0, 1)∈ L, L5=(3, 0, 0) ∈ L,
经计算可得
${U}/{R_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}}\; =\left\{ \left\{ {{x}_{1}} \right\}, \left\{ {{x}_{2}} \right\}, \left\{ {{x}_{3}} \right\}, \left\{ {{x}_{4}} \right\}, \left\{ {{x}_{5}} \right\}, \left\{ {{x}_{6}} \right\}, \left\{ {{x}_{7}} \right\}, \left\{ {{x}_{8}} \right\} \right\}, $
${U}/{R_{{{A}^{{{L}_{3}}}}}^{{{\delta }^{{{L}_{3}}}}}}\; =\left\{ \left\{ {{x}_{1}} \right\}, \left\{ {{x}_{2}} \right\}, \left\{ {{x}_{3}} \right\}, \left\{ {{x}_{4}} \right\}, \left\{ {{x}_{5}} \right\}, \left\{ {{x}_{6}} \right\}, \left\{ {{x}_{7}} \right\}, \left\{ {{x}_{8}} \right\} \right\}, $
$\begin{align} & {U}/{R_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}}\; =\left\{ \left\{ {{x}_{1}}, {{x}_{2}} \right\}, \left\{ {{x}_{3}} \right\}, \left\{ {{x}_{4}} \right\}, \left\{ {{x}_{5}} \right\}, \left\{ {{x}_{6}} \right\}, \left\{ {{x}_{7}}, {{x}_{8}} \right\} \right\}, \\ & {U}/{R_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}}\; =\left\{ \left\{ {{x}_{1}}, {{x}_{4}} \right\}, \left\{ {{x}_{2}} \right\}, \left\{ {{x}_{3}}, {{x}_{6}} \right\}, \left\{ {{x}_{5}} \right\}, \left\{ {{x}_{7}} \right\}, \left\{ {{x}_{8}} \right\} \right\}, \\ \end{align}$
${U}/{{{R}_{d}}}\; =\left\{ \left\{ {{x}_{1}}, {{x}_{3}}, {{x}_{4}}, {{x}_{5}}, {{x}_{7}} \right\}, \left\{ {{x}_{2}}, {{x}_{6}}, {{x}_{8}} \right\} \right\}=\left\{ {{D}_{1}}, \text{ }{{D}_{2}} \right\}.$
命题2 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统, 对于L1∈ L, L2∈ L, 若L2⪰L1, 则
证明 对于∀ (x, y)∈
L1=(
由L2⪰L1以及定义17可得, 对于∀ j∈ {1, 2, ···, m}, 有
$J=\left\{ \left. j \right|\text{ }l_{j}^{1}\ne 0, j\in \left\{ 1, 2, \cdots , m \right\} \right\}$.
由
$R_{{{A}^{{{L}_{2}}}}}^{{{\delta }^{{{L}_{2}}}}}=\bigcap\limits_{a_{j}^{l_{j}^{2}}\in {{A}^{{{L}_{2}}}}}{R_{a_{j}^{l_{j}^{2}}}^{\delta _{j}^{l_{j}^{2}}}}$
知,
$\left( x, y \right)\in \bigcap\limits_{a_{j}^{l_{j}^{2}}\in {{A}^{{{L}_{2}}}}}{R_{a_{j}^{l_{j}^{2}}}^{\delta _{j}^{l_{j}^{2}}}}$
由于对于任意j∈ J, 由命题1可得
$R_{a_{j}^{2}}^{\delta_{j}^{2}} \subseteq R_{a_{j}^{1}}^{\delta_{j}^{1}}$,
于是
$\bigcap\limits_{a_{j}^{l_{j}^{2}}\in {{A}^{{{L}_{2}}}}}{R_{a_{j}^{l_{j}^{2}}}^{\delta _{j}^{l_{j}^{2}}}}=\bigcap\limits_{j\in J}{R_{a_{j}^{l_{j}^{2}}}^{\delta _{j}^{l_{j}^{2}}}}\subseteq \bigcap\limits_{j\in J}{R_{a_{j}^{l_{j}^{1}}}^{\delta _{j}^{l_{j}^{1}}}}$,
从而
$\left( x, y \right)\in \bigcap\limits_{j\in J}{R_{a_{j}^{l_{j}^{1}}}^{\delta _{j}^{l_{j}^{1}}}}=R_{{{A}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}$,
因此, $R_{A L_{2}}^{\delta L_{2}} \subseteq R_{A L_{1}}^{\delta L_{1}}$. 证毕.
性质3 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统, B⊆A, C⊆A, L1∈ L, L2∈ L, 若B⊆C, 且L2⪰L1, 则
1)$R_{{{C}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}\subseteq R_{{{B}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}$,
2)$R_{{{C}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}\subseteq R_{{{B}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}$,
3)$R_{{{A}^{L}}}^{{{\delta }^{{{L}_{2}}}}}\subseteq R_{{{A}^{L}}}^{{{\delta }^{{{L}_{1}}}}}$,
4)$\left[ x \right]_{{{A}^{L}}}^{{{\delta }^{{{L}_{2}}}}}\subseteq \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{{{L}_{1}}}}}$, $x\in U$.
证明 先证1).因为B⊆C⊆A, 所以
$\begin{align} & R_{{{C}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}=\left\{ \left( x, y \right)\in U\times U\left| S\left( a(x), a(y) \right)\ge {{\delta }^{{{L}_{1}}}}, \forall a\in C \right. \right\} \\ & \subseteq \left\{ \left( x, y \right)\in U\times U\left| S\left( a(x), a(y) \right)\ge {{\delta }^{{{L}_{1}}}}, \forall a\in B \right. \right\} \\ & =R_{{{B}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}, \end{align}$
即
再证2).由1)即得.
再证3).由命题2可得.
最后证4).由3)即得. 证毕.
定义21 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统, U/Rd={D1, D2, ···, Dt}, L∈ L, 则d关于AL和δ L的区间下近似与区间上近似分别定义如下:
$\underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}({U}/{{{R}_{d}}}\; )=\underset{1\le k\le t}{\mathop \bigcup }\, \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}({{D}_{k}})$,
$\overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}({U}/{{{R}_{d}}}\; )=\underset{1\le k\le t}{\mathop \bigcup }\, \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}({{D}_{k}})$,
其中,
$\begin{array}{l} \underline{R_{A^{L}}^{\delta^{L}}}\left(D_{k}\right)=\left\{x \in U \mid[x]_{A^{L}}^{\delta^{L}} \subseteq D_{k}\right\}, \\ \overline{R_{A^{L}}^{\delta^{L}}}\left(D_{k}\right)=\left\{x \in U \mid[x]_{A^{L}}^{\delta^{L}} \cap D_{k} \neq \emptyset\right\}, \\ k \in\{1, 2, \cdots, t\} . \end{array}$
进一步地, d关于AL和δ L的区间近似精度与区间粗糙度分别定义如下:
$\alpha _{{{A}^{L}}}^{{{\delta }^{L}}}\left( {U}/{{{R}_{d}}}\; \right)=\frac{\sum{_{{{D}_{k}}\in {U}/{{{R}_{d}}}\; }}\left| \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{k}} \right) \right|}{\sum{_{{{D}_{k}}\in {U}/{{{R}_{d}}}\; }}\left| \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{k}} \right) \right|}$,
$\rho _{{{A}^{L}}}^{{{\delta }^{L}}}\left( {U}/{{{R}_{d}}}\; \right)=1-\alpha _{{{A}^{L}}}^{{{\delta }^{L}}}\left( {U}/{{{R}_{d}}}\; \right)=1-\frac{\sum{_{{{D}_{k}}\in {U}/{{{R}_{d}}}\; }\left| \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{k}} \right) \right|}}{\sum{_{{{D}_{k}}\in {U}/{{{R}_{d}}}\; }\left| \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{k}} \right) \right|}}$.
性质4 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统, U/Rd={D1, D2, ···, Dt}, 对于B⊆A, C⊆A, L1∈ L, L2∈ L, 若B⊆C, 且L2⪰L1, 则
1)
2)
3)
4)
证明 先证1).对于∀ D∈ U/Rd和∀ x∈ $\underline{R_{B L_{1}}^{\delta L_{1}}}(D) $, 由下近似的定义知[x
[x
于是[x
$x\in \underline{R_{{{C}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}}\left( D \right)$,
从而
$\underline{R_{{{B}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}}\left( D \right)\subseteq \underline{R_{{{C}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}}\left( D \right)$,
即得
$\left| \underline{R_{{{B}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}}\left( D \right) \right|\le \left| \underline{R_{{{C}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}}\left( D \right) \right|$,
因此
$\sum{_{D\in {U}/{{{R}_{d}}}\; }\left| \underline{R_{{{B}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}}\left( D \right) \right|}\le \sum{_{D\in {U}/{{{R}_{d}}}\; }\left| \underline{R_{{{C}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}}\left( D \right) \right|}$.
另一方面, 对于∀ D∈ U/Rd和$\forall x \in \overline{R_{C L_{1}}^{\delta L_{1}}}(D) $, 由上近似的定义知
[x
又因为[x
[x
再由上近似的定义知
$x \in \overline{R_{B L_{1}}^{\delta L_{1}}}(D) $,
因此
$\overline{R_{C L_{1}}^{\delta L_{1}}}(D) \subseteq \overline{R_{B L_{1}}^{\delta L_{1}}}(D) $,
即得
$\left| \overline{R_{{{C}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}}\left( D \right) \right|\le \left| \overline{R_{{{B}^{L}}}^{{{\delta }^{L}}}}\left( D \right) \right|$,
因此
$\sum{_{D\in {U}/{{{R}_{d}}}\; }\left| \overline{R_{{{C}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}}\left( D \right) \right|}\le \sum{_{D\in {U}/{{{R}_{d}}}\; }\left| \overline{R_{{{B}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}}\left( D \right) \right|}$,
故
$\frac{\sum_{D \in U / R_{d}}\left|\underline{R_{B L_{1}}^{\delta L_{1}}}(D)\right|}{\sum_{D \in U / R_{d}}\left|\overline{R_{B L_{1}}^{\delta L_{1}}}(D)\right|} \leqslant \frac{\sum_{D \in U / R_{d}}\left|\underline{R_{C L_{1}}^{\delta L_{1}}}(D)\right|}{\sum_{D \in U / R_{d}}\left|\overline{R_{C L_{1}}^{\delta L_{1}}}(D)\right|}, $
即
$\alpha _{{{B}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}\left( {U}/{{{R}_{d}}}\; \right)\le \alpha _{{{C}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}\left( {U}/{{{R}_{d}}}\; \right)$.
再证2).由1)可得.
再证3).由性质3和类似于1)的证明可得.
最后证4).由3)可得. 证毕.
例4 (续例3) 给定尺度组合L0、L3、L4、L5下的区间近似精度和区间粗糙度的计算如下.
由于
$\begin{align} & \left[ {{x}_{1}} \right]_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}=\left\{ {{x}_{1}} \right\}, \text{ }\left[ {{x}_{2}} \right]_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}=\left\{ {{x}_{2}} \right\}, \text{ }\left[ {{x}_{3}} \right]_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}=\left\{ {{x}_{3}} \right\}, \text{ } \\ & \left[ {{x}_{4}} \right]_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}=\left\{ {{x}_{4}} \right\}, \text{ }\left[ {{x}_{5}} \right]_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}=\left\{ {{x}_{5}} \right\}, \text{ }\left[ {{x}_{6}} \right]_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}=\left\{ {{x}_{6}} \right\}, \\ & \left[ {{x}_{7}} \right]_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}=\left\{ {{x}_{7}} \right\}, \text{ }\left[ {{x}_{8}} \right]_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}=\left\{ {{x}_{8}} \right\}, \\ \end{align}$
经计算有
$\begin{align} & \underline{R_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}}\left( {{D}_{1}} \right)=\left\{ {{x}_{1}}, {{x}_{3}}, {{x}_{4}}, {{x}_{5}}, {{x}_{7}} \right\}, \\ & \overline{R_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}}\left( {{D}_{1}} \right)=\left\{ {{x}_{1}}, {{x}_{3}}, {{x}_{4}}, {{x}_{5}}, {{x}_{7}} \right\}, \\ & \underline{R_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}}\left( {{D}_{2}} \right)=\left\{ {{x}_{2}}, {{x}_{6}}, {{x}_{8}} \right\}, \\ & \overline{R_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}}\left( {{D}_{2}} \right)=\left\{ {{x}_{2}}, {{x}_{6}}, {{x}_{8}} \right\}, \\ \end{align}$
因此, d关于
$\begin{align} & \alpha _{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}\left( {U}/{{{R}_{d}}}\; \right)=\frac{\left| \underline{R_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}}\left( {{D}_{1}} \right) \right|+\left| \underline{R_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}}\left( {{D}_{2}} \right) \right|}{\left| \overline{R_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}}\left( {{D}_{1}} \right) \right|+\left| \overline{R_{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}}\left( {{D}_{2}} \right) \right|}=1, \\ & \rho _{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}\left( {U}/{{{R}_{d}}}\; \right)=1-\alpha _{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}\left( {U}/{{{R}_{d}}}\; \right)=0. \\ \end{align}$
因为
U/
所以易得d关于
$\begin{align} & \alpha _{{{A}^{{{L}_{3}}}}}^{{{\delta }^{{{L}_{3}}}}}\left( {U}/{{{R}_{d}}}\; \right)=\alpha _{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}\left( {U}/{{{R}_{d}}}\; \right)=1, \\ & \rho _{{{A}^{{{L}_{3}}}}}^{{{\delta }^{{{L}_{3}}}}}\left( {U}/{{{R}_{d}}}\; \right)=\rho _{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}\left( {U}/{{{R}_{d}}}\; \right)=0. \\ \end{align}$
由于
$\begin{align} & \left[ {{x}_{1}} \right]_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}=\left[ {{x}_{2}} \right]_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}=\left\{ {{x}_{1}}, {{x}_{2}} \right\}, \text{ }\left[ {{x}_{3}} \right]_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}=\left\{ {{x}_{3}} \right\}, \\ & \left[ {{x}_{4}} \right]_{{{A}^{{{L}_{2}}}}}^{{{\delta }^{{{L}_{4}}}}}=\left\{ {{x}_{4}} \right\}, \text{ }\left[ {{x}_{5}} \right]_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}=\left\{ {{x}_{5}} \right\}, \text{ }\left[ {{x}_{6}} \right]_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}=\left\{ {{x}_{6}} \right\}, \\ & \left[ {{x}_{7}} \right]_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}=\left[ {{x}_{8}} \right]_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}=\left\{ {{x}_{7}}, {{x}_{8}} \right\}, \\ \end{align}$
经计算有
$\begin{align} & \underline{R_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}}\left( {{D}_{1}} \right)=\left\{ {{x}_{3}}, {{x}_{4}}, {{x}_{5}} \right\}, \\ & \overline{R_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}}\left( {{D}_{1}} \right)=\left\{ {{x}_{1}}, {{x}_{2}}, {{x}_{3}}, {{x}_{4}}, {{x}_{5}}, {{x}_{7}}, {{x}_{8}} \right\}, \\ & \underline{R_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}}\left( {{D}_{2}} \right)=\left\{ {{x}_{6}} \right\}, \\ & \overline{R_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}}\left( {{D}_{2}} \right)=\left\{ {{x}_{1}}, {{x}_{2}}, {{x}_{6}}, {{x}_{7}}, {{x}_{8}} \right\}, \\ \end{align}$
因此, d关于
$\alpha _{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}\left( {U}/{{{R}_{d}}}\; \right)=\frac{\left| \underline{R_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}}\left( {{D}_{1}} \right) \right|+\left| \underline{R_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}}\left( {{D}_{2}} \right) \right|}{\left| \overline{R_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}}\left( {{D}_{1}} \right) \right|+\left| \overline{R_{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}}\left( {{D}_{2}} \right) \right|}=\frac{1}{3}, $
$\rho _{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}\left( {U}/{{{R}_{d}}}\; \right)=1-\alpha _{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}\left( {U}/{{{R}_{d}}}\; \right)=\frac{2}{3}.$
由于
$\begin{align} & \left[ {{x}_{1}} \right]_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}=\left[ {{x}_{4}} \right]_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}=\left\{ {{x}_{1}}, {{x}_{4}} \right\}, \text{ }\left[ {{x}_{2}} \right]_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}=\left\{ {{x}_{2}} \right\}, \\ & \left[ {{x}_{3}} \right]_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}=\left[ {{x}_{6}} \right]_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}=\left\{ {{x}_{3}}, {{x}_{6}} \right\}, \text{ }\left[ {{x}_{5}} \right]_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}=\left\{ {{x}_{5}} \right\}, \\ & \left[ {{x}_{7}} \right]_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}=\left\{ {{x}_{7}} \right\}, \text{ }\left[ {{x}_{8}} \right]_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}=\left\{ {{x}_{8}} \right\}, \\ \end{align}$
经计算有
$\begin{array}{l} \underline{R_{A L_{5}}^{\delta L_{5}}}\left(D_{1}\right)=\left\{x_{1}, x_{4}, x_{5}, x_{7}\right\}, \\ \overline{R_{A L_{5}}^{\delta L_{5}}}\left(D_{1}\right)=\left\{x_{1}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right\}, \\ R_{A L_{5}}^{\delta L_{5}}\left(D_{2}\right)=\left\{x_{2}, x_{8}\right\}, \\ \overline{R_{A L_{5}}^{\delta L_{5}}}\left(D_{2}\right)=\left\{x_{2}, x_{3}, x_{6}, x_{8}\right\}, \end{array}$
因此, d关于
$\begin{align} & \alpha _{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}\left( {U}/{{{R}_{d}}}\; \right)=\frac{\left| \underline{R_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}}\left( {{D}_{1}} \right) \right|+\left| \underline{R_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}}\left( {{D}_{2}} \right) \right|}{\left| \overline{R_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}}\left( {{D}_{1}} \right) \right|+\left| \overline{R_{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}}\left( {{D}_{2}} \right) \right|}=\frac{3}{5}, \\ & \rho _{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}\left( {U}/{{{R}_{d}}}\; \right)=1-\alpha _{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}\left( {U}/{{{R}_{d}}}\; \right)=\frac{2}{5}. \\ \end{align}$
定义22 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统, U/Rd={D1, D2, ···, Dt}, 对于L∈ L, d关于AL和δ L的条件熵定义如下:
${{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=-\sum\limits_{i=1}^{n}{\sum\limits_{k=1}^{t}{\frac{\left| \left[ {{x}_{i}} \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap {{D}_{k}} \right|}{U{{}^{2}}}{{\log }_{2}}\frac{\left| \left[ {{x}_{i}} \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap {{D}_{k}} \right|}{\left| \left[ {{x}_{i}} \right]_{{{A}^{L}}}^{{{\delta }^{L}}} \right|}}}$.
性质5 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统, U/Rd={D1, D2, ···, Dt}, B⊆A, C⊆A, L1∈ L, L2∈ L, 则
1)若L2⪰L1, 则${{H}^{{{\delta }^{{{L}_{2}}}}}}\left( \left. d \right|{{A}^{{{L}_{2}}}} \right)\le {{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{A}^{{{L}_{1}}}} \right)$,
2)若B⊆C, 则${{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{C}^{{{L}_{1}}}} \right)\le {{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{B}^{{{L}_{1}}}} \right)$.
证明 先证1).若L2⪰L1, 对于∀ x∈ U和∀ Dk∈ U/Rd, 由性质3得
[x
所以
$\begin{align} & \left| \left[ x \right]_{{{A}^{{{L}_{2}}}}}^{{{\delta }^{{{L}_{2}}}}}\bigcap {{D}_{k}} \right|\le \left| \left[ x \right]_{{{A}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}\bigcap {{D}_{k}} \right|, \\ & \left| \left[ x \right]_{{{A}^{{{L}_{2}}}}}^{{{\delta }^{{{L}_{2}}}}}\bigcap \neg {{D}_{k}} \right|\le \left| \left[ x \right]_{{{A}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}\bigcap \neg {{D}_{k}} \right|\text{. } \end{align}$
记
$f(x, y)=-x \log _{2}\left(\frac{x}{x+y}\right) $,
则d关于
${{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{A}^{{{L}_{1}}}} \right)=\frac{1}{{{\left| U \right|}^{2}}}\sum\limits_{i=1}^{n}{\sum\limits_{k=1}^{t}{f\left( \left| \left[ {{x}_{i}} \right]_{{{A}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}\bigcap {{D}_{k}} \right| , \left| \left[ {{x}_{i}} \right]_{{{A}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}\bigcap \neg {{D}_{k}} \right| \right)}}.$
同样地, d关于
${{H}^{{{\delta }^{{{L}_{2}}}}}}\left( \left. d \right|{{A}^{{{L}_{2}}}} \right)=\frac{1}{{{\left| U \right|}^{2}}}\sum\limits_{i=1}^{n}{\sum\limits_{k=1}^{t}{f\left( \left| \left[ {{x}_{i}} \right]_{{{A}^{{{L}_{2}}}}}^{{{\delta }^{{{L}_{2}}}}}\bigcap {{D}_{k}} \right|, \left| \left[ {{x}_{i}} \right]_{{{A}^{{{L}_{2}}}}}^{{{\delta }^{{{L}_{2}}}}}\bigcap \neg {{D}_{k}} \right| \right)}}.$
因为当x> 0, y≥ 0时, f(x, y)为单调递增函数[43], 因此
$\begin{align} & 0\le f\left( \left| \left[ {{x}_{i}} \right]_{{{A}^{{{L}_{2}}}}}^{{{\delta }^{{{L}_{2}}}}}\bigcap {{D}_{k}} \right|, \left| \left[ {{x}_{i}} \right]_{{{A}^{{{L}_{2}}}}}^{{{\delta }^{{{L}_{2}}}}}\bigcap \neg {{D}_{k}} \right| \right) \\ & \text{ }\le \text{ }f\left( \left| \left[ {{x}_{i}} \right]_{{{A}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}\bigcap {{D}_{k}} \right|, \left| \left[ {{x}_{i}} \right]_{{{A}^{{{L}_{1}}}}}^{{{\delta }^{{{L}_{1}}}}}\bigcap \neg {{D}_{k}} \right| \right), \\ \end{align}$
从而
${{H}^{{{\delta }^{{{L}_{2}}}}}}\left( \left. d \right|{{A}^{{{L}_{2}}}} \right)\le {{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{A}^{{{L}_{1}}}} \right)$
再证2).由性质3和类似于1)的证明可得.
证毕.
定义23 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统, U/Rd={D1, D2, ···, Dt}, L∈ L, 定义d关于AL和δ L的区间集决策熵如下:
$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=\rho _{{{A}^{L}}}^{{{\delta }^{L}}}\left( {U}/{{{R}_{d}}}\; \right){{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)$.
性质6 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统, B⊆A, C⊆A, L1∈ L, L2∈ L, 则
1)若L2⪰L1, 则
$ID{{H}^{{{\delta }^{{{L}_{2}}}}}}\left( \left. d \right|{{A}^{{{L}_{2}}}} \right)\le ID{{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{A}^{{{L}_{1}}}} \right)$,
2)若B⊆C, 则
$ID{{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{C}^{{{L}_{1}}}} \right)\le ID{{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{B}^{{{L}_{1}}}} \right)$.
证明 先证1).若L2⪰L1, 则由性质4可知
又由性质5知
${{H}^{{{\delta }^{{{L}_{2}}}}}}\left( \left. d \right|{{A}^{{{L}_{2}}}} \right)\le {{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{A}^{{{L}_{1}}}} \right)$,
因此
$ID{{H}^{{{\delta }^{{{L}_{2}}}}}}\left( \left. d \right|{{A}^{{{L}_{2}}}} \right)\le ID{{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{A}^{{{L}_{1}}}} \right)$.
再证2).若B⊆C, 由性质4可知
又由性质5知
${{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{C}^{{{L}_{1}}}} \right)\le {{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{B}^{{{L}_{1}}}} \right)$,
所以
$ID{{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{C}^{{{L}_{1}}}} \right)\le ID{{H}^{{{\delta }^{{{L}_{1}}}}}}\left( \left. d \right|{{B}^{{{L}_{1}}}} \right)$. 证毕.
本节基于区间集决策熵讨论协调广义多尺度区间集决策系统中的最优尺度组合、熵最优尺度组合和对应的最优尺度约简问题.
定义24 设S=(U, A∪ {d})为一个广义多尺度区间集决策系统,
L0=(I1, I2, ···, Im)∈ L,
若
定义25 设S=(U, A∪ {d})为一个协调广义多尺度区间集决策系统, L∈ L, 则
1)若
2)若
$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=ID{{H}^{{{\delta }^{_{{{L}_{0}}}}}}}\left( \left. d \right|{{A}^{{{L}_{0}}}} \right)$,
则称SL关于S是熵协调的, 否则称SL关于S不是熵协调的.
定义26 设S=(U, A∪ {d})为一个协调广义多尺度区间集决策系统, L∈ L, 若SL关于S是协调的, 且对于满足L≻K的任意K∈ L, SK关于S是不协调的, 则称L为S的一个最优尺度组合, 同时称AL为S的一个最优尺度约简.
注3 定义26说明, L∈ L是协调广义多尺度区间集决策系统S=(U, A∪ {d})的一个最优尺度组合当且仅当L是格(L, ⪰, ∧ , ∨ )中使区间集决策系统SL是协调的一个极小元.AL为S的一个最优尺度约简当且仅当L是格(L, ⪰, ∧ , ∨ )中使得SL是协调的一个极小元.
定义27 设S=(U, A∪ {d})为一个协调广义多尺度区间集决策系统, L∈ L, 若SL关于S是熵协调的, 且对于满足L≻K的任意K∈ L, SK关于S不是熵协调的, 则称L为S的一个熵最优尺度组合, 同时称AL为S的一个熵最优尺度约简.
注4 定义27说明, L∈ L是协调广义多尺度区间集决策系统S=(U, A∪ {d})的一个熵最优尺度组合当且仅当L是格(L, ⪰, ∧ , ∨ )中使区间集决策熵$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)$与格(L, ⪰, ∧ , ∨ )最大元对应的区间集决策熵$ID{{H}^{{{\delta }^{_{{{L}_{0}}}}}}}\left( \left. d \right|{{A}^{{{L}_{0}}}} \right)$相同的一个极小元.AL为S的一个熵最优尺度约简当且仅当L是格(L, ⪰, ∧ , ∨ )中使区间集决策熵$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)$与格(L, ⪰, ∧ , ∨ )最大元对应的区间集决策熵$ID{{H}^{{{\delta }^{_{{{L}_{0}}}}}}}\left( \left. d \right|{{A}^{{{L}_{0}}}} \right)$相同的一个极小元.
定理1 设S=(U, A∪ {d})为一个协调广义多尺度区间集决策系统, L∈ L, 则$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=0$当且仅当SL关于S是协调的.
证明 必要性.若$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=0$, 则
$\rho _{{{A}^{L}}}^{{{\delta }^{L}}}\left( {U}/{{{R}_{d}}}\; \right){{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=0$,
于是或者
若
$\sum{_{D\in {U}/{{{R}_{d}}}\; }}\left| \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D \right) \right|=\sum{_{D\in {U}/{{{R}_{d}}}\; }}\left| \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D \right) \right|, \text{ }$,
又因为
$\left| \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D \right) \right|\le \left| \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D \right) \right|$,
所以
$\left| \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D \right) \right| =\left| \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D \right) \right|$,
从而由
$\underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D \right)\subseteq D\subseteq \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D \right)$,
可得
$\underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D \right) =\overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D \right)=D$.
对于∀ x∈ U, 取D'∈ U/Rd, 使得
[x]d=D',
又因为
$\underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D' \right) =D'$,
从而
$x\in \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D' \right)$.
于是由下近似的定义知
$\left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\subseteq {{\left[ x \right]}_{d}}=D'$,
由x∈ U的任意性得
若${{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=0$, 则对于∀ x∈ U和∀ D∈ U/Rd, 由性质5证明过程可得
$\frac{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap D \right|}{{{\left| U \right|}^{2}}}{{\log }_{2}}\frac{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap D \right|}{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}} \right|}=0$,
即
$\frac{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap D \right|}{{{\left| U \right|}^{2}}}{{\log }_{2}}\frac{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap D \right|}{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap D \right|+\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap \neg D \right|}=0$,
于是可得
$\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap D \right|\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap \neg D \right|=0$.
在上式中取D=[x]d, 显然
$\left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap {{\left[ x \right]}_{d}}\ne \varnothing $,
因此
$\left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap \left( \neg {{\left[ x \right]}_{d}} \right)=\varnothing $,
于是[x
充分性.若SL关于S是协调的, 即
U/Rd={D1, D2, ···, Dt},
选取k'∈ {1, 2, ···, t}, 使得Dk'=[x]d, 则对于∀ k∈ {1, 2, ···, t}, 有
[x
于是当k=k'时, 有
${{\log }_{2}}\frac{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap {{D}_{k}} \right|}{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}} \right|}={{\log }_{2}}\frac{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}} \right|}{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}} \right|}={{\log }_{2}}1=0$
当k≠ k'时, 有
$\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap {{D}_{k}} \right|=0$.
综上, 由x∈ U的任意性和Dk∈ U/Rd的任意性且根据${{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)$的定义即得
${{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=0$,
从而进一步可得
$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=0.$. 证毕.
定理2 设S=(U, A∪ {d})为一个协调广义多尺度区间集决策系统, L∈ L, 则下列结论等价:
1)SL关于S是协调的,
2)SL关于S是熵协调的.
证明 1)⇒ 2).若SL关于S是协调的, 由定义25知
$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=0$,
又因为S是协调的, 即
$ID{{H}^{{{\delta }^{{{L}_{0}}}}}}\left( \left. d \right|{{A}^{{{L}_{0}}}} \right)=0$.
于是
$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=ID{{H}^{{{\delta }^{{{L}_{0}}}}}}\left( \left. d \right|{{A}^{{{L}_{0}}}} \right)=0$,
即SL关于S是熵协调的.
2)⇒ 1).假设SL关于S是不协调的, 即
则存在x∈ U和j∈ {1, 2, ···, t}, 使得d(x)=j, 并且
$\left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap {{D}_{j}}\ne \varnothing $,
但
$\left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\nsubseteq {{D}_{j}}$,
即
$\left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap {{D}_{j}}\ne \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}$,
于是
$\frac{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap {{D}_{j}} \right|}{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}} \right|}< 1$,
从而
${{\log }_{2}}\left( \frac{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap {{D}_{j}} \right|}{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}} \right|} \right)< 0$,
因此
$H\left( \left. d \right|{{C}^{L}} \right)\ge -\frac{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap {{D}_{j}} \right|}{{{n}^{2}}}{{\log }_{2}}\left( \frac{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}}\bigcap {{D}_{j}} \right|}{\left| \left[ x \right]_{{{A}^{L}}}^{{{\delta }^{L}}} \right|} \right)> 0$.
另一方面, 由于
[x
且
[x
即
x∉
且
$x\in \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{j}} \right), $
所以
$ \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{j}} \right)\subsetneq \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{j}} \right), $
故
$\left| \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{j}} \right) \right|< \left| \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{j}} \right) \right|$
而对于∀ Dk∈ U/Rd(k≠ j), 显然
$\left| \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{k}} \right) \right|\le \left| \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{k}} \right) \right|$
因此
$\left| \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{j}} \right) \right|+\sum\limits_{k\ne j}{\left| \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{k}} \right) \right|}< \left| \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{j}} \right) \right|+\sum\limits_{k\ne j}{\left| \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( {{D}_{k}} \right) \right|}$
即
$\sum{_{D\in {U}/{{{R}_{d}}}\; }}\left| \underline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D \right) \right|< \sum{_{D\in {U}/{{{R}_{d}}}\; }}\left| \overline{R_{{{A}^{L}}}^{{{\delta }^{L}}}}\left( D \right) \right|$
从而
故
$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)\text{}0$.
又因为SL关于S是熵协调的, 所以
$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=ID{{H}^{{{\delta }^{{{L}_{0}}}}}}\left( \left. d \right|{{A}^{{{L}_{0}}}} \right)$,
而S是协调的, 即
$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=ID{{H}^{{{\delta }^{{{L}_{0}}}}}}\left( \left. d \right|{{A}^{{{L}_{0}}}} \right)=0$.
这与$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)\text{}0$矛盾, 故假设不成立. 证毕.
定理3 设S=(U, A∪ {d})为一个协调广义多尺度区间集决策系统, L∈ L, 则下列结论等价:
1)L是S的一个最优尺度组合,
2)L是S的一个熵最优尺度组合.
证明 由定理2、定义25、定义26和定义27
可得. 证毕.
定理4 设S=(U, A∪ {d})为一个协调广义多尺度区间集决策系统, L∈ L, 则下列结论等价:
1)AL是S的一个最优尺度约简,
2)AL是S的一个熵最优尺度约简.
证明 由定理2、定义25、定义26和定义27
可得. 证毕.
注5 定理1~定理4表明, 对于一个协调广义多尺度区间集决策系统S=(U, A∪ {d}), 最优尺度组合的概念与熵最优尺度的概念是等价的, 同时, 最优尺度约简的概念与熵最优尺度约简的概念也是等价的.并且L与AL分别是S=(U, A∪ {d})的一个最优尺度组合与一个最优尺度约简当且仅当L是格(L, ⪰, ∧ , ∨ )中使区间集决策熵
$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=0$
的一个极小元, 即
$ID{{H}^{{{\delta }^{L}}}}\left( \left. d \right|{{A}^{L}} \right)=0$,
并且对于(L, ⪰, ∧ , ∨ )中严格弱(小)于L的任何元素K都有
$ID{{H}^{{{\delta }^{K}}}}\left( \left. d \right|{{A}^{K}} \right)> 0$,
而在具体计算中, 只须验证格(L, ⪰, ∧ , ∨ )中L的所有子节点对应的区间集决策熵大于0即可.
例5 (续例4) 根据例3中尺度组合下的相似类计算可得
因为L3≻L4, L3≻L5, 且(U,
另一方面, 经计算有
$\begin{array}{c} H^{\delta L_{0}}\left(d \mid A^{L_{0}}\right)=-\frac{1}{8^{2}}\left(\log _{2}\left(\frac{1}{1}\right)+\log _{2}\left(\frac{1}{1}\right)+\right. \\ \log _{2}\left(\frac{1}{1}\right)+\log _{2}\left(\frac{1}{1}\right)+\log _{2}\left(\frac{1}{1}\right)+ \\ \left.\log _{2}\left(\frac{1}{1}\right)+\log _{2}\left(\frac{1}{1}\right)+\log _{2}\left(\frac{1}{1}\right)\right)=0 \end{array}$
$H^{\delta L_{3}}\left(d \mid A^{L_{3}}\right)=H^{\delta L_{0}}\left(d \mid A^{L_{0}}\right)=0$
$\begin{array}{c} H^{\delta L_{4}}\left(d \mid A^{L_{4}}\right)=-\frac{1}{8^{2}}\left(\log _{2}\left(\frac{1}{2}\right)+\log _{2}\left(\frac{1}{2}\right)+\right. \\ \log _{2}\left(\frac{1}{2}\right)+\log _{2}\left(\frac{1}{2}\right)+\log _{2}\left(\frac{1}{2}\right)+ \\ \left.\log _{2}\left(\frac{1}{2}\right)+\log _{2}\left(\frac{1}{2}\right)+\log _{2}\left(\frac{1}{2}\right)\right)=\frac{1}{8} \end{array}$
$\begin{array}{c} H^{\delta L_{5}}\left(d \mid A^{L_{5}}\right)=-\frac{1}{8^{2}}\left(2 \log _{2}\left(\frac{2}{2}\right)+2 \log _{2}\left(\frac{2}{2}\right)+\right. \\ \log _{2}\left(\frac{1}{2}\right)+\log _{2}\left(\frac{1}{2}\right)+\log _{2}\left(\frac{1}{2}\right)+ \\ \left.\log _{2}\left(\frac{1}{2}\right)\right)=\frac{1}{16} . \end{array}$
$\begin{align} & ID{{H}^{{{\delta }^{{{L}_{0}}}}}}\left( \left. d \right|{{A}^{{{L}_{0}}}} \right)=\rho _{{{A}^{{{L}_{0}}}}}^{{{\delta }^{{{L}_{0}}}}}\left( {U}/{{{R}_{d}}}\; \right){{H}^{{{\delta }^{{{L}_{0}}}}}}\left( \left. d \right|{{A}^{{{L}_{0}}}} \right)=0, \\ & ID{{H}^{{{\delta }^{{{L}_{3}}}}}}\left( \left. d \right|{{A}^{{{L}_{3}}}} \right)=\rho _{{{A}^{{{L}_{3}}}}}^{{{\delta }^{{{L}_{3}}}}}\left( {U}/{{{R}_{d}}}\; \right){{H}^{{{\delta }^{{{L}_{3}}}}}}\left( \left. d \right|{{A}^{{{L}_{1}}}} \right)=0, \\ & ID{{H}^{{{\delta }^{{{L}_{4}}}}}}\left( \left. d \right|{{A}^{{{L}_{4}}}} \right)=\rho _{{{A}^{{{L}_{4}}}}}^{{{\delta }^{{{L}_{4}}}}}\left( {U}/{{{R}_{d}}}\; \right){{H}^{{{\delta }^{{{L}_{4}}}}}}\left( \left. d \right|{{A}^{{{L}_{4}}}} \right)=\frac{1}{12}, \\ \end{align}$
$ID{{H}^{{{\delta }^{{{L}_{5}}}}}}\left( \left. d \right|{{A}^{{{L}_{5}}}} \right)=\rho _{{{A}^{{{L}_{5}}}}}^{{{\delta }^{{{L}_{5}}}}}\left( {U}/{{{R}_{d}}}\; \right){{H}^{{{\delta }^{{{L}_{5}}}}}}\left( \left. d \right|{{A}^{{{L}_{5}}}} \right)=\frac{1}{40}.$
由此可见$ID{{H}^{{{\delta }^{{{L}_{3}}}}}}\left( \left. d \right|{{A}^{{{L}_{3}}}} \right)$等于0, 且与$ID{{H}^{{{\delta }^{{{L}_{0}}}}}}\left( \left. d \right|{{A}^{{{L}_{0}}}} \right)$相等, 而$ID{{H}^{{{\delta }^{{{L}_{4}}}}}}\left( \left. d \right|{{A}^{{{L}_{4}}}} \right)$和$ID{{H}^{{{\delta }^{{{L}_{5}}}}}}\left( \left. d \right|{{A}^{{{L}_{5}}}} \right)$均不等于0, 与$ID{{H}^{{{\delta }^{{{L}_{0}}}}}}\left( \left. d \right|{{A}^{{{L}_{0}}}} \right)$不相等.根据定义25可得
在广义多尺度粗糙集数据分析模型中, 最优尺度组合选择与属性约简是知识获取的两个关键问题.本文提出广义多尺度区间集决策系统的概念, 构造广义多尺度区间集信息系统在不同尺度组合下对象集的相似关系, 获得相应的信息粒集合.结合区间粗糙度和条件熵给出区间集决策熵的概念与性质.在协调广义多尺度区间集决策系统中证明最优尺度组合概念与熵最优尺度组合概念的等价性, 也证实最优尺度约简概念与熵最优尺度约简概念的等价性, 有助于进一步研究广义多尺度区间集决策系统的知识获取问题.今后将考虑进一步讨论不协调广义多尺度区间集决策系统、不完备广义多尺度区间集决策系统以及决策也是多尺度的广义多尺度区间集信息系统等复杂数据类型的最优尺度组合选择与最优尺度约简问题, 并进一步研究动态混合多尺度数据的最优尺度选择与知识获取问题.
本文责任编委 梁吉业
Recommended by Associate Editor LIANG Jiye
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|

