Abstract:An Alopex based evolutionary algorithm is proposed. Its salient feature is randomly selecting two individuals and computing their objective values. According to the information of the two individuals, the probability of search direction is ascertained. By iterative computing, the global optimum is obtained. It has the advantages of both gradient methods and simulation anneal algorithm to some extent. The anneal temperature is self-adjusting over the proceeding of evolution. The proposed algorithm is used to optimize the benchmark functions and the kinetic parameters of 2-chlorophenol oxidation in supercritical water. The experimental results demonstrate that the proposed algorithm is superior to the original evolutionary algorithms, especially for the multi-apices function problems.
[1] Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor, USA: University of Michigan Press,1975 [2] Kennedy J, Eberhart R. Particle Swarm Optimization // Proc of the IEEE International Conference on Neural Networks. Perth, Australia, 1995: 1942-1948 [3] Storn R. Differential Evolution Design of an IIR Filter // Proc of the IEEE International Conference on Evolutionary Computation. Nagoya, Japan, 1996: 268-273 [4] Elbeltagi E, Hegazy T, Grierson D. Comparison among Five Evolutionary-Based Optimization Algorithm. Advanced Engineering Informatics, 2005, 19(1): 43-53 [5] Liu Bo, Wang Ling, Jin Yihui. Advances in Differential Evolution. Control and Decision, 2007, 22(7): 721-729 (in Chinese) (刘 波,王 凌,金以慧.差分进化算法研究进展.控制与决策, 2007, 22(7): 721-729) [6] Ni Qingjian, Xing Hancheng, Zhang Zhizheng, et al. Survey of Particle Swarm Optimization Algorithm. Pattern Recognition and Artificial Intelligence, 2007, 20(3): 349-357 (in Chinese) (倪庆剑,邢汉承,张志政,等.粒子群优化算法研究进展.模式识别与人工智能, 2007, 20(3): 349-357) [7] Wu Mei, Lu Jingui. Summary of Research Progress of the Genetic Algorithms. Machine Tool & Hydraulics, 2008, 36(3): 176-179 (in Chinese) (吴 玫,陆金桂.遗传算法的研究进展综述.机床与液压, 2008, 36(3): 176-179) [8] Coello C A C. Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms: A Survey of the State of the Art. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11/12): 1245-1287 [9] Bia A. Alopex-B: A New, Simpler, But Yet Faster Version of the Alopex Training Algorithm. International Journal of Neural Systems, 2001, 11(6): 497-507 [10] Li Shaojun, Wang Hui, Yao Pingjing. Study of Genetic-Alopex Algorithms for Seeking the Global Optimization. Information and Control, 2000, 29(4): 304-308 (in Chinese) (李绍军,王 惠,姚平经.求解全局最优化的遗传(GA)—Alopex算法的研究.信息与控制, 2000, 29(4): 304-308) [11] Li Shaojun, Zhang Xujie, Wang Hui, et al. Improved Particle Swarm Optimization Algorithms by Alopex and Its Application in Soft Sensor Modeling. Journal of East China University of Science and Technology, 2006, 32(9): 1104-1108 (in Chinese) (李绍军,张绪杰,王 惠,等.利用Alopex改进的粒子群优化算法及其在软测量建模中的应用.华东理工大学学报, 2006, 32(9): 1104-1108) [12] Zhai Haifeng, Su Hongye, Chu Jian, et al. A Hybrid Global Optimization Algorithm for Non-Differential Function Based on Elitist Maintained Genetic and Alopex Algorithms. Journal of Circuits and Systems, 2002, 7(1): 1-4 (in Chinese) (翟海峰,苏宏业,褚 健,等.基于EGA与Alopex算法的非可微函数混合全局优化算法.电路与系统学报, 2002, 7(1): 1-4) [13] Li Ruokang, Savage P E, Szmukler D. 2-Chlorophenol Oxidation in Supercritical Water: Global Kinetics and Reaction Products. AIChE Journal, 1993, 39(1): 178-187 [14] Yan Xuefeng, Chen Dezhao, Hu Shangxu, et al. Estimation of Kinetic Parameters Using Chaos Genetic Algorithms. Journal of Chemical Industry and Engineering, 2002, 53(8): 810-814 (in Chinese) (颜学峰,陈德钊,胡上序,等.混沌遗传算法估计反应动力学参数.化工学报, 2002, 53(8): 810-814) [15] Zhang Bing, Chen Dezhao, Rao Jun. Estimation of Kinetic Parameters by Using Eugenic Evolution Programming. Journal of Chemical Engineering of Chinese Universities, 2004, 18(5): 638-642 (in Chinese) (张 兵,陈德钊,饶 骏.优进策略支持的进化规划估计反应动力学参数.高校化学工程学报, 2004, 18(5): 638-642)