模式识别与人工智能
2025年4月13日 星期日   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能
论文 最新目录| 下期目录| 过刊浏览| 高级检索 |
一种基于证据理论和任务分配的Deep Web查询接口匹配方法
A Deep Web Query Interface Matching Approach Based on Evidence Theory and Task Assignment

全文: PDF (629 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对已有查询接口匹配方法匹配器权重设置困难、匹配决策缺乏有效处理的局限性, 提出一种基于证据理论和任务分配的Deep Web查询接口匹配方法(Evidence Theory and Task Assignment based Query Interface Matching Approach, ETTA-IM).该方法通过引入改进的D-S证据理论自动融合多个匹配器结果,避免手工设定匹配器权重,有效减少人工干预.通过对任务分配问题进行扩展,将查询接口的一对一匹配决策问题转化为扩展的任务分配问题,为源查询接口中的每一个属性选择合适的匹配,并在此基础上,采用树结构启发式规则进行一对多匹配决策.实验结果表明ETTA-IM方法具有较高的查准率和查全率.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
董永权
李庆忠
丁艳辉
张永新
关键词 查询接口匹配模式匹配Deep WebWeb数据集成    
Abstract:To solve the limitations of existing query interface matching which have the difficulties of weight setting of the matcher and the absence of the efficient processing of matching decision, a deep web query interface matching approach based on evidence theory and task assignment called Evidence Theory and Task Assignment based Query Interface Matching Approach(ETTA-IM) is proposed. Firstly, an improved DS evidence theory is used to automatically combine multiple matchers. In this way, the weight of each matcher is not required to be set by hand and human involvement is reduced. Then, a method is used to select a proper attribute correspondence of each source attribute from target query interface, which converts one to one matching decision to the extended task assignment problem. Finally, based on one to one matching results, some heuristic rules of tree structure are used to perform onetomany matching decision. Experimental results show that ETTA-IM approach has high precision and recall measure.
Key wordsQuery Interface Matching    Schema Matching    Deep Web    Web Data Integration   
    
ZTFLH: TP 391  
引用本文:   
董永权, 李庆忠, 丁艳辉, 张永新. 一种基于证据理论和任务分配的Deep Web查询接口匹配方法[J]. 模式识别与人工智能, 2011, 24(2): 262-271. DONG Yong-Quan, LI Qing-Zhong, DING Yan-Hui, ZHANG Yong-Xin. A Deep Web Query Interface Matching Approach Based on Evidence Theory and Task Assignment. , 2011, 24(2): 262-271.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2011/V24/I2/262
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn