基于云模型的自适应量子粒子群算法
马颖1, 2 , 田维坚1 , 樊养余1
1.西北工业大学 电子信息学院 西安 710072
2.西安工业大学 电子信息工程学院 西安 710032
Adaptive Quantum-Behaved Particle Swarm Optimization Algorithm Based on Cloud Model
MA Ying1, 2 , TIAN Wei-Jian1 , FAN Yang-Yu1
1.School of Electronics and Information, Northwestern Polytechnical University, Xian 710072
2.School of Electronic Information Engineering, Xian Technological University, Xian 710032W
摘要 利用云模型理论能兼顾随机性和模糊性的特质, 提出一种基于云模型的自适应量子粒子群优化算法。首先分析量子粒子群算法的控制机制, 在此基础上, 使用云算子实现对每个粒子的吸收扩张因子自适应控制, 达到在进化过程中对粒子飞行位置动态调整的目的, 使算法具有较快的收敛速度和较强的全局搜索能力。同时, 补充针对性的优化方案, 有效避免算法陷入局部最优。对典型测试函数的仿真对比实验表明, 该算法具有寻优能力强、搜索精度高、稳定度好等优点, 相比其它同类算法具有一定优势。
关键词 :
云模型 ,
量子粒子群算法 ,
量子计算 ,
函数优化
Abstract :Utilizing the characteristic of cloud model principles which can make good balance between the randomness and the fuzziness, an adaptive quantum-behaved particle swarm optimization algorithm based on cloud model is proposed. Firstly, the control mechanism of quantum-behaved particle swarm optimization algorithm is analyzed. On this basis, the absorption-expansion factor of each particle is adaptively controlled by cloud operators to achieve the dynamic adjustment to the positions of particles in evolutionary process. Thus, the proposed algorithm obtains a higher convergence speed and a stronger global search ability. Programs are modified for the targeted optimization to make the proposed algorithm effectively avoid falling into local optimum. The results of simulation experiments with typical test functions show that the proposed algorithm has advantages in search ability, accuracy and stability, and it is more effective than other similar algorithms.
Key words :
Cloud Model
Quantum-Behaved Particle Swarm Algorithm
Quantum Computing
Function Optimization
收稿日期: 2012-11-19
基金资助: 西安工业大学校长科研基金项目(No.XAGDXJJ1042)资助
作者简介 : 马颖(通讯作者), 男, 1979年生, 工程师, 博士研究生, 主要研究方向为量子信息、信号处理等.E-mail:innovator@163.com.田维坚, 男, 1957年生, 博士, 研究员, 主要研究方向为光电工程.樊养余, 男, 1960年生, 博士, 教授, 主要研究方向为模式识别、虚拟现实等。
[1] Sun Jun, Feng Bin, Xu Wenbo. Particle Swarm Optimization with Particles Having Quantum Behavior // Proc of the Congress on Evolutionary Computation. Portland, USA, 2004: 325-331
[2] Sun Jun, Xu Wenbo. A Global Search Strategy of Quantum Behaved Particle Swarm Optimization // Proc of the IEEE Conference on Cybernetics and Intelligent Systems. Singapore, Singapore, 2004: 111-116
[3] Fang Wei, Sun Jun, Xie Zhenping, et al . Convergence Analysis of Quantum-Behaved Particle Swarm Optimization Algorithm and Study on Its Control Parameter. Acta Physica Sinica, 2010, 59(6): 3686-3694 (in Chinese)
(方 伟,孙 俊,谢振平,等.量子粒子群优化算法的收敛性分析及控制参数研究.物理学报, 2010, 59(6): 3686-3694)
[4] Huang Zexia, Yu Youhong, Huang Decai. Quantum-Behaved Particle Swarm Algorithm with Self-Adapting Adjustment of Inertia Weight. Journal of Shanghai Jiaotong University, 2012, 46(2): 228-232(in Chinese)
(黄泽霞,俞攸红,黄德才.惯性权自适应调整的量子粒子群优化算法.上海交通大学学报, 2012, 46(2): 228-232)
[5] Xiang Yi, Zhong Yubin. Research on Adaptive Period Mutation-Based QPSO Algorithm. Application Research of Computers, 2012, 29(6): 2035-2039 (in Chinese)
(向 毅,钟育彬.自适应阶段变异量子粒子群优化算法研究.计算机应用研究, 2012, 29(6): 2035-2039)
[6] Xu Shaohua, Wang Hao, Wang Ying, et al . Improved Quantum Particle Swarm Optimization Algorithm and Its Application. Computer Engineering and Applications, 2011, 47(20): 34-37(in Chinese)
(许少华,王 皓,王 颖,等.一种改进的量子粒子群优化算法及其应用.计算机工程与应用, 2011, 47(20): 34-37)
[7] Li Hongchan, Zhu Haodong. Parallel Adaptive Immune Quantum-Behaved Particle Swarm Optimization Algorithm. Computer Enginee-ring, 2011, 37(5): 221-223 (in Chinese)
(李红婵,朱颢东.并行自适应免疫量子粒子群优化算法.计算机工程, 2011, 37(5): 221-223)
[8] Li Xinran, Jin Yanxia. Chaos Quantum Particle Swarm Optimization Algorithm with Self-Adapting Adjustment of Inertia Weight. Compu-ter Systems Application, 2012, 21(8): 127-130 (in Chinese)
(李欣然,靳雁霞.权重自适应调整的混沌量子粒子群优化算法.计算机系统应用, 2012, 21(8): 127-130)
[9] Zhang Yingjie, Shao Suifeng, Niyongabo J. Cloud Hypermutation Particle Swarm Optimization Algorithm Based on Cloud Model. Pattern Recognition and Artificial Intelligence, 2011, 24(1): 90-96 (in Chinese)
(张英杰,邵岁峰,Niyongabo J.一种基于云模型的云变异粒子群算法.模式识别与人工智能, 2011, 24(1): 90-96)
[10] Zhang Jinhua. Modified Adaptive PSO Algorithm Based on Cloud Theory. Computer Engineering and Applications, 2012, 48(5): 29-31 (in Chinese)
(张锦华.改进的云自适应粒子群算法.计算机工程与应用,2012, 48(5): 29-31)
[11] Zhang Chaolong, Yu Chunri, Jiang Shanhe, et al . Particle Swarm Optimization Algorithm Based on Chaos Cloud Model. Journal of Computer Applications, 2012, 32(7): 1951-1954 (in Chinese)
(张朝龙,余春日,江善和,等.基于混沌云模型的粒子群优化算法.计算机应用, 2012, 32(7): 1951-1954 )
[12] Zhang Yanqiong. Improved Adaptive Particle Swarm Optimization Algorithm Based on Cloud Theory. Application Research of Computers, 2010, 27(9): 3250-3252 (in Chinese)
(张艳琼.改进的云自适应粒子群优化算法.计算机应用研究, 2010, 27(9): 3250-3252)
[1]
李荣雨,陈庆倩,陈思远. 改进吸引度的动态搜索萤火虫算法* [J]. 模式识别与人工智能, 2017, 30(6): 538-548.
[2]
陈克琼,王建平,李帷韬,赵丽欣. 基于变粒度仿反馈机制的回转窑烧成状态智能认知方法* [J]. 模式识别与人工智能, 2015, 28(11): 1013-1022.
[3]
苏兆品,张婷,张国富,尤小泉,蒋建国. 基于云模型和模糊聚合的应急方案评估* [J]. 模式识别与人工智能, 2014, 27(11): 1047-1056.
[4]
谢健,周永权,陈欢. 一种基于Lévy飞行轨迹的蝙蝠算法 [J]. 模式识别与人工智能, 2013, 26(9): 829-837.
[5]
许昌林,王国胤. 实现稳定双向认知映射的逆向云变换算法 [J]. 模式识别与人工智能, 2013, 26(7): 634-642.
[6]
金泰松,李玲玲,李翠华. 基于全局优化策略的场景分类算法 [J]. 模式识别与人工智能, 2013, 26(5): 440-446.
[7]
林小军,叶东毅. 一种带规范知识引导的改进人工蜂群算法 [J]. 模式识别与人工智能, 2013, 26(3): 307-314.
[8]
李盼池,施光尧. 基于序列输入的量子神经网络模型及算法 [J]. 模式识别与人工智能, 2013, 26(3): 247-253.
[9]
胡欣欣,尹义龙. 求解连续函数优化问题的合作协同进化布谷鸟搜索算法 [J]. 模式识别与人工智能, 2013, 26(11): 1041-1049.
[10]
贾旭,崔建江,薛定宇,潘峰. 基于感兴趣区域函数优化的静脉图像分割算法 [J]. 模式识别与人工智能, 2012, 25(3): 475-480.
[11]
吴涛,秦昆. 利用云模型和数据场的图像分割方法 [J]. 模式识别与人工智能, 2012, 25(3): 397-405.
[12]
何振峰,熊范纶. 峰度驱动的云进化策略 [J]. 模式识别与人工智能, 2012, 25(2): 205-212.
[13]
张军丽,周永权. 一种用Powell方法局部优化的人工萤火虫算法 [J]. 模式识别与人工智能, 2011, 24(5): 680-684.
[14]
刘士荣, 张波涛. 采用生物信息机制的量子免疫克隆算法 [J]. 模式识别与人工智能, 2011, 24(3): 391-399.
[15]
张英杰,邵岁锋,NiyongaboJulius. 一种基于云模型的云变异粒子群算法 [J]. 模式识别与人工智能, 2011, 24(1): 90-96.