[1] Pawlak Z. Rough Sets. International Journal of Computer and Science,1982,11(5): 341-356 [2] Wang J,Wang J. Reduction Algorithms Based on Discernibility Matrix: The Ordered Attributes Method. Journal of Computer Science and Technology,2001,16(6): 489-504 [3] Yao Y Y,Zhao Y,Wang J,et al. A Model of User-Oriented Reduct Construction for Machine Learning // Peters J F,Skowron A,Jerzy W,eds. Transactions on Rough Sets VIII. Berlin,Germany: Springer-Verlag,2008: 332-351 [4] Ziarko W. Rough Set Approaches for Discovering Rules and Attribute Dependencies // Klosgen W,Zytkow J,eds. Handbook of Data Mining and Knowledge Discovery. Oxford,UK: Oxford University Press,2002: 328-338 [5] Zhao K,Wang J. A Reduction Algorithm Meeting Users′ Requirements. Journal of Computer Science and Technology,2002,17(5): 578-593 [6] Han S Q,Wang J. Reduct and Attribute Order. Journal of Computer Science and Technology,2004,19(4): 429-449 [7] Yao Y Y,Zhao Y,Wang J,et al. A Model of Machine Learning Based on User Preference of Attributes // Proc of the 5th International Conference on Rough Sets and Current Trends in Computing. Kobe,Japan,2006: 587-596 [8] Zhao M,Han S Q,Wang J. Tree Expressions for Information Systems. Journal of Computer Science and Technology,2007,22(2): 297-307 [9] Liang H L,Wang J,Yao Y Y. User-Oriented Features Selection for Machine Learning. The Computer Journal,2007,50(4): 421-434 [10] Zhu W. Topological Approaches to Covering Rough Sets. Information Sciences,2007,177(6): 1499-1508