Abstract:A global search operator is designed to prevent the magnetic bacteria algorithm from falling into local minimum easily and an improved power spectrum-based magnetotactic bacteria algorithm(IPSMBA) is proposed. The algorithm is based on the power spectrum of the magnetic particles in bacteria bodies. The bacteria moment regulation operator and bacteria replacement operator are improved in the process of simulating magnetic bacteria moment regulation. To make the best of the power spectrum information and increase the diversity of the population, a new moment replacement operator combining chaotic mapping and power spectrum replacement operator is designed. The experiments indicate that IPSMBA achieves better convergence and robustness on low dimensional benchmark functions, and it has better performance on high dimensional functions.
[1] HOLLAND J H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor, USA: University of Michigan Press, 1975. [2] IZUMI K, HASHEM M M A, WATANABE K. Evolution Strategy with Competing Subpopulations // Proc of the IEEE International Symposium on Computational Intelligence in Robotics and Automation. Washington, USA: IEEE, 1997: 306-311. [3] FOGEL L J, OWENS A J, WALSH M J. Artificial Intelligence through Simulated Evolution. New York, USA: John Wiley, 1966: 227-296. [4] DORIGO M, MANIEZZO V, COLORNI A. Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics(Cybernetics), 1996, 26(1): 29-41. [5] KENNEDY J, EBERHART R C. A Discrete Binary Version of the Particle Swarm Algorithm // Proc of the IEEE International Conference on Systems, Man, and Cybernetics. Washington, USA: IEEE, 1997, V: 4104-4108. [6] KARABOGA D, AKAY B. A Comparative Study of Artificial Bee Colony Algorithm. Applied Mathematics and Computation, 2009, 214(1): 108-132. [7] BASTOS FILHO C J A, DE LIMA NETO F B, LINS A J C C, et al. A Novel Search Algorithm Based on Fish School Behavior // Proc of the IEEE International Conference on Systems, Man and Cybernetics. Washington, USA: IEEE, 2008: 2646-2651. [8] MULLER S D, MARCHETTO J, AIRAGHI S, et al. Optimization Based on Bacterial Chemotaxis. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 16-29. [9] TAYARANI-N M H, AKBARZADEH-T M R. Magnetic Optimization Algorithms: A New Synthesis // Proc of the IEEE Congress on Evolutionary Computation. Washington, USA: IEEE, 2007: 2659-2664. [10] MEHRABIAN A R, LUCAS C. A Novel Numerical Optimization Algorithm Inspired from Weed Colonization. Ecological Informa-tics, 2006, 1(4): 355-366. [11] WERREN J H, O′NEILL S L. The Evolution of Heritable Symbionts[J/OL]. [2016-12-21]. http://www.sas.rochester.edu/bio/labs/WerrenLab/WerrenPapers-PDF/1997_WerrONeill_EvoHeritSymbionts.pdf. [12] SIMON D. Biogeography-Based Optimization. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702-713. [13] MO H W. Research on Magnetotactic Bacteria Optimization Algorithm // Proc of the 5th IEEE International Conference on Advanced Computational Intelligence. Washington, USA: IEEE, 2012: 423-427. [14] WINKLHOFER M, ABRA ADO L G, DAVILA A F, et al. Magnetic Optimization in a Multicellular Magnetotactic Organism. Biophysical Journal, 2007, 92(2): 661-670. [15] MO H W, MA J W, ZHAO Y Y. An Improved Magnetotactic Bacteria Moment Migration Optimization Algorithm // Proc of the International Conference on Artificial Intelligence and Soft Computing. Berlin, Germany: Springer, 2015: 691-702. [16] MO H W, XU L F. Magnetotactic Bacteria Optimization Algorithm for Multimodal Optimization // Proc of the IEEE Symposium on Swarm Intelligence. Washington, USA: IEEE, 2013: 240-247. [17] MO H W, LIU L L. Magnetotactic Bacteria Optimization Algorithm Based on Best-Target Scheme // Proc of the 10th International Conference on Natural Computation. Washington, USA: IEEE, 2014: 451-456. [18] 徐志丹.趋磁性细菌多目标优化算法.控制与决策, 2016, 31(5): 829-834. (XU Z D. Magnetotactic Bacteria Multi-objective Optimization Algorithm. Control and Decision, 2016, 31(5): 829-834.) [19] CHEMLA Y R, GROSSMAN H L, LEE T S, et al. A New Study of Bacterial Motion: Superconducting Quantum Interference Device Microscopy of Magnetotactic Bacteria. Biophysical Journal, 1999, 76(6): 3323-3330. [20] MO H W, LIU L L, XU L F. A Power Spectrum Optimization Algorithm Inspired by Magnetotactic Bacteria. Neural Computing and Applications, 2014, 25(7/8): 1823-1844. [21] PHILIPSE A P, MAAS D. Magnetic Colloids from Magnetotactic Bacteria: Chain Formation and Colloidal Stability. Langmuir, 2002, 18(25): 9977-9984. [22] PATTNAIK S S, BAKWAD K M, SOHI B S, et al.Swine Influenza Models Based Optimization(SIMBO). Applied Soft Computing, 2013, 13(1): 628-653. [23] 胡 旺,李志蜀.一种更简化而高效的粒子群优化算法.软件学报, 2007, 18(4): 861-868. (HU W, LI Z S. A Simpler and More Effective Particle Swarm Optimization Algorithm. Journal of Software, 2007, 18(4): 861-868.) [24] YANG Z Y, TANG K, YAO X. Large Scale Evolutionary Optimization Using Cooperative Coevolution. Information Sciences, 2008, 178(15): 2985-2999. [25] ARUMUGAM M S, RAO M V C, TAN A W C. A Novel and Effective Particle Swarm Optimization Like Algorithm with Extrapolation Technique. Applied Soft Computing, 2009, 9(1): 308-320.