模式识别与人工智能
2025年4月4日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2022, Vol. 35 Issue (4): 363-373    DOI: 10.16451/j.cnki.issn1003-6059.202204006
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于分层动态贝叶斯网络的股市趋势扰动推理算法
姚宏亮1, 贾虹宇1, 杨静1, 俞奎1
1.合肥工业大学 计算机与信息学院 合肥 230601
Inference Algorithm for Stock Market Trend Disturbance Based on Hierarchical Dynamic Bayesian Network
YAO Hongliang1, JIA Hongyu1, YANG Jing1, YU Kui1
1. School of Computer Science and Information Engineering, He-fei University of Technology, Hefei 230601

全文: PDF (1217 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 当前研究者主要通过对历史交易数据的学习生成预测模型,由于影响市场的因素动态可变,因此训练好的模型在实际应用中预测效果远不及预期.针对现有预测模型适应力较弱的问题,文中提出基于分层动态贝叶斯网络的股市趋势扰动推理算法,对股市趋势进行实时预测.首先,针对稳定性较高的均线数据,通过马尔可夫毯对均线特征进行融合,提取为均线能量,得到均线的量化特征.由于多根均线之间存在结构关系,这种结构关系具有较强的抗噪能力和稳定性,因此利用分层动态贝叶斯网络对单根均线内部结构和多均线之间结构关系进行建模.然后,对顶层网络中多结点状态进行扰动,通过动态灵敏性分析实时计算结点状态变化对于股市趋势影响力.最后,基于灵敏分析的结果,利用联合树对股市趋势进行动态推理.在实际数据上的实验证明文中算法的有效性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚宏亮
贾虹宇
杨静
俞奎
关键词 动态贝叶斯网络灵敏性分析联合树马尔可夫毯股市趋势预测    
Abstract:The current research mainly focuses on the forecasting models generated by the learning of historical transaction data. Due to the dynamic variation of the factors affecting the market, the forecasting effect of the trained model in practical applications is much worse than the expected. To solve the problem of weak adaptability of the existing forecasting models, a disturbance inference algorithm based on hierarchical dynamic Bayesian network(DA-NEC) is proposed to predict stock market trends in real time. Firstly, for the moving average data with high stability, the energy of the moving average is extracted through the Markov blanket fusion of the moving average features, and the quantitative characteristics of the moving average are generated. Since the structural relationship among multiple moving averages possesses strong anti-noise ability and stability, the hierarchical dynamic Bayesian network is employed to model the internal structure of a single moving average and the structural relationship among multiple moving averages. Then, the state of multiple nodes in the top-level network is disturbed, and the state changes of the nodes are calculated in real time through dynamic sensitivity analysis. In the end, based on the results of sensitive analysis, the junction tree is applied for dynamic inference on the stock market trend. Experimental results on actual data show the effectiveness of the proposed algorithm.
Key wordsDynamic Bayesian Network    Sensitivity Analysis    Junction Tree    Markov Blanket    Stock Market Trend Forecast   
收稿日期: 2021-10-18     
ZTFLH: TP18  
基金资助:国家重点研发计划项目(No.2020AAA0106100)、国家自然科学基金面上项目(No.61876206,62176082)资助
通讯作者: 姚宏亮,博士,副教授,主要研究方向为机器学习、数据挖掘.E-mail:dmicyhl@163.com.   
作者简介: 贾虹宇,硕士研究生,主要研究方向为机器学习、数据挖掘.E-mail:1551688132@qq.com. 杨 静,博士,副教授,主要研究方向为人工智能、数据挖掘.E-mail:jsjyj0801@163.com. 俞 奎,博士,教授,主要研究方向为机器学习、因果发现.E-mail:yukui@hfut.edu.cn.
引用本文:   
姚宏亮, 贾虹宇, 杨静, 俞奎. 基于分层动态贝叶斯网络的股市趋势扰动推理算法[J]. 模式识别与人工智能, 2022, 35(4): 363-373. YAO Hongliang, JIA Hongyu, YANG Jing, YU Kui. Inference Algorithm for Stock Market Trend Disturbance Based on Hierarchical Dynamic Bayesian Network. Pattern Recognition and Artificial Intelligence, 2022, 35(4): 363-373.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202204006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2022/V35/I4/363
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn