| [1] CHANG Y P, WANG X, WANG J D, et al. A Survey on Evaluation of Large Language Models. ACM Transactions on Intelligent Systems and Technology, 2024, 15(3). DOI: 10.1145/364128.
[2] 李超,廖红梅,徐晓,等.基于密度分布的鲁棒谱聚类算法.计算机学报, 2024, 47(11): 2645-2663.
(LI C, LIAO H M, XU X, et al. Robust Spectral Clustering Based on Density Distribution. Chinese Journal of Computers, 2024, 47(11): 2645-2663.)
[3] 张胜杰,王一飞,向旺,等.基于变分贝叶斯对比网络的非参数图像聚类方法.模式识别与人工智能, 2023, 36(9): 832-841.
(ZHANG S J, WANG Y F, XIANG W, et al. Nonparametric Image Clustering Based on Variational Bayesian Contrastive Network. Pa-ttern Recognition and Artificial Intelligence, 2023, 36(9): 832-841.)
[4] LI X T, WONG K C.Single-Cell RNA Sequencing Data Interpretation by Evolutionary Multiobjective Clustering. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(5):1773-1784.
[5] TAHA K.Semi-supervised and Un-supervised Clustering: A Review and Experimental Evaluation. Information Systems, 2023, 114. DOI: 10.1016/j.is.2023.102178.
[6] LANGE T,LAW M H C,JAIN A K, et al. Learning with Constrained and Unlabelled Data // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2005. DOI: 10.1109/CVPR.2005.210.
[7] DING S F, HOU H W, XU X, et al. Graph-Based Semi-Supervised Deep Image Clustering with Adaptive Adjacency Matrix. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(12): 18828-18837.
[8] XIONG C M, JOHNSON D M, CORSO J J.Active Clustering with Model-Based Uncertainty Reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(1): 5-17.
[9] BAE J, HELLDIN T, RIVEIRO M, et al. Interactive Clustering: A Comprehensive Review. ACM Computing Surveys, 2020, 53(1). DOI: 10.1145/3340960.
[10] JIANG Z, ZHAN Y Z, MAO Q R, et al. Semi-supervised Clus-tering under a "Compact-Cluster" Assumption. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 5244-5256.
[11] CAI J H, HAO J, YANG H F, et al. A Review on Semi-supervised Clustering. Information Sciences, 2023, 632: 164-200.
[12] SHI Y C, OTTO C, JAIN A K.Face Clustering: Representation and Pairwise Constraints. IEEE Transactions on Information Forensics and Security, 2018, 13(7): 1626-1640.
[13] ABIN A A, VU V V.A Density-Based Approach for Querying Informative Constraints for Clustering. Expert Systems with Applications, 2020, 161. DOI: 10.1016/j.eswa.2020.113690.
[14] BASU S, BANERJEE A, MOONEY R J.Active Semi-supervision for Pairwise Constrained Clustering // Proc of the SIAM International Conference on Data Mining. Philadelphia, USA: SIAM, 2004: 333-344.
[15] ZONG L L, ZHANG X C, LIU X Y.Multi-view Clustering on Unmapped Data via Constrained Non-negative Matrix Factorization. Neural Networks, 2018, 108: 155-171.
[16] OHI A Q, MRIDHA M F, SAFIR F B, et al. AutoEmbedder: A Semi-supervised DNN Embedding System for Clustering. Know-ledge-Based Systems, 2020, 204. DOI: 10.1016/j.knosys.2020.106190.
[17] LI Y C, WANG Y L, YU D J, et al. ASCENT: Active Supervision for Semi-supervised Learning. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(5): 868-882.
[18] YU C Z, HANSEN J H L. Active Learning Based Constrained Clus-tering for Speaker Diarization. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(11): 2188-2198.
[19] SUN B C, ZHOU P, DU L, et al. Active Deep Image Clustering. Knowledge-Based Systems, 2022, 252. DOI: 10.1016/j.knosys.2022.109346.
[20] MALLAPRAGADA P K, JIN R, JAIN A K.Active Query Selection for Semi-supervised Clustering // Proc of the 19th Internatio-nal Conference on Pattern Recognition. Washington, USA: IEEE, 2008: 1-4.
[21] ZHOU P, SUN B C, LIU X W, et al. Active Clustering Ensemble with Self-Paced Learning. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(9): 12186-12200.
[22] SHI Y F, YU Z W, CAO W M, et al. Fast and Effective Active Clustering Ensemble Based on Density Peak. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(8): 3593-3607.
[23] XIONG S C, AZIMI J, FERN X Z.Active Learning of Constraints for Semi-supervised Clustering. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1): 43-54.
[24] SOUSA H, DE SOUTO M C P, KUROSHU R M, et al. Automatic Recovering the Number k of Clusters in the Data by Active Query Selection // Proc of the 36th Annual ACM Symposium on Applied Computing. New York, USA: ACM, 2021: 1021-1029.
[25] DENG Y J, YUAN Y B, FU H D, et al. Query-Augmented Active Metric Learning. Journal of the American Statistical Association, 2023, 118(543): 1862-1875.
[26] VAN CRAENENDONCK T, DUMANCIC S, BLOCKEEL H.COBRA: A Fast and Simple Method for Active Clustering with Pairwise Constraints // Proc of the 26th International Joint Conference on Artificial Intelligence. San Francisco, USA: IJCAI, 2017: 2871-2877.
[27] VAN CRAENENDONCK T, DUMAN?I? S, VAN WOLPUTTE E. COBRAS: Interactive Clustering with Pairwise Queries // Proc of the 17th International Symposium on Advances in Intelligent Data Analysis. Berlin, Germany: Springer, 2018: 353-366.
[28] JIA Y H, LIU H, HOU J H, et al. Pairwise Constraint Propagation with Dual Adversarial Manifold Regularization. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(12): 5575-5587.
[29] YIN J X, PENG S Y, YANG Z J, et al. Hypergraph Based Semi-supervised Symmetric Nonnegative Matrix Factorization for Image Clustering. Pattern Recognition, 2023, 137. DOI: 10.1016/j.patcog.2022.109274.
[30] HUANG S J, JIN R, ZHOU Z H.Active Learning by Querying Informative and Representative Examples. IEEE Transactions on Pa-ttern Analysis and Machine Intelligence, 2014, 36(10): 1936-1949.
[31] YAO W P, YAO W L, YAO D Z, et al. Shannon Entropy and Quantitative Time Irreversibility for Different and Even Contradictory Aspects of Complex Systems. Applied Physics Letters, 2020, 116(1). DOI: 10.1063/1.5133419.
[32] ZHAO N, WANG H, WEN J J, et al. Identifying Critical Nodes in Complex Networks Based on Neighborhood Information. New Journal of Physics, 2023, 25(8). DOI: 10.1088/1367-2630/ace843.
[33] HUBERT L, ARABIE P. Comparing Partitions. Journal of Classification, 1985, 2: 193-218.
[34] DENG X, LIU J L, ZHONG H, et al. A3S: A General Active Clustering Method with Pairwise Constraints. Proceedings of Machine Learning Research, 2024, 235: 10488-10505.
[35] ZENG G J, PENG H, LI A S, et al. Semi-supervised Clustering via Structural Entropy with Different Constraints // Proc of the SIAM International Conference on Data Mining. Philadelphia, USA: SIAM, 2024: 208-216. |