模式识别与人工智能
Wednesday, Apr. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (1): 7-14    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Fuzzy Support Vector Classification Based on Possibility Theory
YANG ZhiMin1, DENG NaiYang2
1.Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou 310024
2.College of Science, China Agriculture University, Beijing 100083

Download: PDF (386 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  The fuzzy support vector classification is discussed, in which both the output of the training point and the value of the final fuzzy classification function are triangle fuzzy number. First, the fuzzy classification problem is formulated as a fuzzy chance constrained programming. Then, this programming is transformed into its equivalence quadratic programming. As a result, fuzzy support vector classification algorithm is proposed. An example is presented to show the rationality of the algorithm.
Key wordsMachine Learning      Fuzzy Support Vector Classification      Possibility Measure, Triangle Fuzzy Number     
Received: 16 January 2006     
ZTFLH: TP13  
  O159  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YANG ZhiMin
DENG NaiYang
Cite this article:   
YANG ZhiMin,DENG NaiYang. Fuzzy Support Vector Classification Based on Possibility Theory[J]. , 2007, 20(1): 7-14.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I1/7
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn