模式识别与人工智能
Friday, Apr. 4, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (3): 371-376    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
An Improved Spatial Clustering Algorithm
HU CaiPing, QIN XiaoLin
College of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016

Download: PDF (321 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Spatial clustering is one of the most important spatial data mining techniques. In this paper, an improved spatial clustering algorithm (AISCA) based on DBSCAN is proposed. In order to cluster largescale spatial databases effectively, the proposed algorithm adopts a new sampling technique. In addition, it considers not only spatial attributes but also nonspatial attributes by introducing the concept of the matching neighborhood. Experimental results of 2D spatial datasets show that the proposed algorithm is feasible and efficient.
Key wordsSpatial Data Mining      Spatial Clustering      NonSpatial Attributes     
Received: 06 April 2006     
ZTFLH: TP181  
  TP301.6  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
HU CaiPing
QIN XiaoLin
Cite this article:   
HU CaiPing,QIN XiaoLin. An Improved Spatial Clustering Algorithm[J]. , 2007, 20(3): 371-376.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I3/371
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn