模式识别与人工智能
Friday, Apr. 4, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (4): 458-462    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Adaptive Parallel Ant Colony Optimization Algorithm
YAO BaoZhen
Department of Purchasing and Sourcing, Ryobi Dalian Machinery Corporation Limited, Dalian 116600

Download: PDF (405 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Ant colony optimization algorithm is a new simulated evolutionary algorithm, which has the faculty of global optimization. An adaptive parallel ant colony optimization algorithm (APACO) is presented. It dynamically adjusts the parameters according to the searching phases, thus the convergence is accelerated to a certain extent. The adaptive migration rule could not only enrich the diversity of the colonies but also reduce the communication between colonies. Finally, the CHN144 problem of China in Nonnumerical Parallel Algorithm: the Simulated Annealing Algorithm by Lishan Kang is applied to calibrate the algorithm. Results show that the proposed algorithm improves the searching speed with good global convergence.
Key wordsAnt Colony Optimization Algorithm      Adaptive      Parallel     
Received: 22 November 2005     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YAO BaoZhen
Cite this article:   
YAO BaoZhen. Adaptive Parallel Ant Colony Optimization Algorithm[J]. , 2007, 20(4): 458-462.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I4/458
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn