模式识别与人工智能
Sunday, Apr. 6, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (4): 505-511    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Online Series Pattern Detection Based on Advanced Segmental SemiMarkov Model
LING GuangJie, QIAN YunTao, JIA Sen
College of Computer Science, Zhejiang University, Hangzhou 310027

Download: PDF (432 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Efficient online detection of similar patterns under arbitrary time scaling is a challenging problem in time series data mining. A modelmatching based segmental semiMarkov model is improved by introducing offset distribution, amplitude difference distribution and prepattern state. It overcomes the parameter estimation difficulty and the lack of robustness. The experimental results demonstrate that the advanced segmental semiMarkov model could rapidly and precisely detect scaling similar patterns under arbitrary time.
Key wordsOnline Series Pattern Detection      Hidden Markov Model      Segmental SemiMarkov Model     
Received: 20 February 2006     
ZTFLH: TP391.4  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LING GuangJie
QIAN YunTao
JIA Sen
Cite this article:   
LING GuangJie,QIAN YunTao,JIA Sen. Online Series Pattern Detection Based on Advanced Segmental SemiMarkov Model[J]. , 2007, 20(4): 505-511.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I4/505
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn