模式识别与人工智能
Friday, March 14, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (5): 593-598    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Complexity Analysis of Partial Implication Semantics
ZHOU Yi, CHEN XiaoPing
Department of Computer Science and Technology, University of Science and Technology
of China, Hefei 230027

Download: PDF (332 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Minimal model and partial implication semantics play important roles in the subfields of artificial intelligence. In this paper, the complexity issues of minimal model and partial implication semantics are analyzed when the antecedent and the consequent are literals, literal sets and formulas respectively. The results show that the complexities of minimal model and partial implication semantics increase when the antecedent and consequent become more complex. Moreover, the complexities of all these decision problems lie in the first two layers of polynomial hierarchy.
Key wordsComplexity Analysis      Minimal Model      Partial Implication      Artificial Intelligence     
Received: 16 March 2006     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHOU Yi
CHEN XiaoPing
Cite this article:   
ZHOU Yi,CHEN XiaoPing. Complexity Analysis of Partial Implication Semantics[J]. , 2007, 20(5): 593-598.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I5/593
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn