模式识别与人工智能
Friday, March 14, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (5): 606-611    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
A Particle Swarm Algorithm for MultiObjective Optimization Problem
JIANG Hao, ZHENG JinHua, CHEN LiangJun
Institute of Information Engineering, Xiangtan University, Xiangtan 411105

Download: PDF (466 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A new multiobjective particle swarm optimization (MOPSO) based on enhanced εdominance is proposed, which keeps good diversity. A new idea named guide mutation is introduced to select global guide from the archive. Then a population updating strategy and selfadaptive mutation operation are shown to speed up convergence. Experimental results show that the proposed approach has effective and steadystate performance and is simple to implement.
Key wordsEvolutionary Computation      MultiObjective Optimization      MultiObjective Particle Swarm Optimization (MOPSO)      Particle Swarm Optimization     
Received: 07 August 2006     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
JIANG Hao
ZHENG JinHua
CHEN LiangJun
Cite this article:   
JIANG Hao,ZHENG JinHua,CHEN LiangJun. A Particle Swarm Algorithm for MultiObjective Optimization Problem[J]. , 2007, 20(5): 606-611.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I5/606
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn