模式识别与人工智能
Friday, March 14, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (5): 649-653    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Feature Extraction Based on K-Nearest Neighbor Decision Boundary
HAO Hong-Wei, SU Rong-Wei
School of Information Engineering, University of Science and Technology Beijing,
Beijing 100083

Download: PDF (416 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A modified K-nearest neighbor based decision boundary analysis (KNN-DBA) method is proposed for improving the classification performance. The decision boundary is determined by K-nearest neighbor classifier which is simple and fast. The extracted feature dimensionality is not limited by class number. Experimental results on the USPS handwritten digit dataset using nearest neighbor and support vector classifiers show that the DBA method outperforms principal component analysis (PCA).
Key wordsDecision Boundary Analysis (DBA)      Feature Extraction      Nearest Neighbor      Support Vector Machine (SVM)     
Received: 21 August 2006     
ZTFLH: TP391.4  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
HAO Hong-Wei
SU Rong-Wei
Cite this article:   
HAO Hong-Wei,SU Rong-Wei. Feature Extraction Based on K-Nearest Neighbor Decision Boundary[J]. , 2007, 20(5): 649-653.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I5/649
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn