模式识别与人工智能
Friday, March 14, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (5): 698-703    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
A Generalized Method for Unsupervised Text Clustering Using Finite Mixture Models
ZHANG Liang, LI Min-Qiang
School of Management, Tianjin University, Tianjin 300072

Download: PDF (371 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A generalized method is presented for unsupervised text clustering. The relevance of the features to the mixture components is introduced to the mixture model as a set of latent variables. Then the model selection, feature selection and parameter estimation of the mixture model are integrated into one general framework. Experimental results on four large scale document datasets show that the proposed method achieves fine results in model selection, feature selection and clustering performance.
Key wordsFinite Mixtures      Unsupervised Learning      Document Clustering      Feature Selection      Model Selection      Expectation-Maximization Algorithm     
Received: 24 July 2006     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHANG Liang
LI Min-Qiang
Cite this article:   
ZHANG Liang,LI Min-Qiang. A Generalized Method for Unsupervised Text Clustering Using Finite Mixture Models[J]. , 2007, 20(5): 698-703.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I5/698
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn