模式识别与人工智能
Saturday, March 15, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2008, Vol. 21 Issue (3): 376-380    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Unsupervised SAR Image SegmentationBased on Immune K-Means Clustering
BO Hua1, MA Fu-Long2, JIAO Li-Cheng3
1.College of Information Engineering, Shanghai Maritime University, Shanghai 200135
1.Philips Research Asia, Shanghai 2002333.
Institute of Intelligent Information Processing, Xidian University, Xi'an 710071

Download: PDF (631 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Combined with the information entropy characteristic of image texture and the co-occurrence-matrix concept, a practical unsupervised SAR image segmentation algorithm is presented based on immune K-means clustering. It overcomes the disadvantages of local optima and sensitivity to the values and noises, and has the same fast-convergence advantage as K-means method. The theoretical analysis and experimental results show that the proposed algorithm has low computing complexity and strong robustness.
Key wordsSynthetic Aperture Radar (SAR) Image      Immune K-Means Clustering      Information Entropy      Unsupervised Segmentation     
Received: 08 June 2006     
ZTFLH: TN957  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
BO Hua
MA Fu-Long
JIAO Li-Cheng
Cite this article:   
BO Hua,MA Fu-Long,JIAO Li-Cheng. Unsupervised SAR Image SegmentationBased on Immune K-Means Clustering[J]. , 2008, 21(3): 376-380.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2008/V21/I3/376
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn