模式识别与人工智能
Wednesday, Apr. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2009, Vol. 22 Issue (1): 8-16    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Total Margin v-Support Vector Machine and Its Geometric Problem
PENG Xin-Jun1,2, WANG Yi-Fei3
1.Department of Computational Mathematics, Shanghai Normal University, Shanghai 200234
2.Scientific Computing Key Laboratory of Shanghai Universities, College of Mathematics and Science,Shanghai Normal University, Shanghai 200234
3.Department of Mathematics, Shanghai University, Shanghai 200444

Download: PDF (1059 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A total margin v-support vector machine (TM-v-SVM) is presented and it has better theoretical classification performance than v-SVM. The theoretical research shows that the TM-v-SVM is equivalent to the problem of finding the closest pair of points between two compressed convex hulls (CCHs) in the feature space. A geometric algorithm based on the theoretical properties of CCHs is proposed. Simulation results show that the TM-v-SVM and its geometric algorithm have better performance than the previous methods.
Key wordsSupport Vector Machine (SVM)      Total Margin Support Vector Machine (TM-SVM)      Total Margin v-Support Vector Machine (TM-v-SVM)      Compressed Convex Hull (CCH)      Geometric Algorithm     
Received: 03 December 2007     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
PENG Xin-Jun
WANG Yi-Fei
Cite this article:   
PENG Xin-Jun,WANG Yi-Fei. Total Margin v-Support Vector Machine and Its Geometric Problem[J]. , 2009, 22(1): 8-16.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2009/V22/I1/8
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn