模式识别与人工智能
Wednesday, Apr. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2010, Vol. 23 Issue (6): 822-828    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Minimum Generation Error Based Optimization of HMM Model Clustering for Speech Synthesis
LU Heng,LING Zhen-Hua,LEI Ming,DAI Li-Rong,WANG Ren-Hua
iFlytek Speech Laboratory,Department of Electronic Engineering and Information Science,
University of Science and Technology of China,Hefei 230027

Download: PDF (478 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  To improve the decision tree clustering and avoid possible clustered model over-training and less-training, a minimal generation error criterion and cross-validation (CV) based minimal description length factor optimizing method is introduced. CV based generation error is calculated to optimize the scale of the decision tree. Results of both subjective and objective tests show that synthesized speech by the proposed method outperforms the synthesized speech by the baseline one system in both quality and naturalness.
Key wordsHidden Markov Model (HMM)      Speech Synthesis      Decision Tree Clustering      Minimal Description Length (MDL)      Cross-Validation (CV)     
Received: 03 June 2009     
ZTFLH: TN912.33  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LU Heng
LING Zhen-Hua
LEI Ming
DAI Li-Rong
WANG Ren-Hua
Cite this article:   
LU Heng,LING Zhen-Hua,LEI Ming等. Minimum Generation Error Based Optimization of HMM Model Clustering for Speech Synthesis[J]. , 2010, 23(6): 822-828.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2010/V23/I6/822
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn