模式识别与人工智能
Thursday, May. 1, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2011, Vol. 24 Issue (3): 452-456    DOI:
Articles Current Issue| Next Issue| Archive| Adv Search |
A Hybrid Constrained Semi Supervised Clustering Algorithm

Download: PDF (274 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A hybrid constrained semi supervised clustering algorithm(HCC) is proposed based on consistency algorithm. To get a better clustering result, both labeled data and pairwise constraints are considered in clustering to make use of two types of prior knowledge supplementary to each other. The theoretical derivation and the algorithm are presented in detail. Experimental results show that labeled data outperform pairwise constraints in promoting the quality of clustering. Additionally, for many indices, such as CRI, number of clusters and running time, HCC is better than comparative algorithms.
Key wordsSemi Supervised Clustering      Hybrid Constrained      Labeled Data      Pairwise Constraint     
ZTFLH: TP 301.6  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LI Xue-Mei
WANG Li-Hong
SONG Yi-Bin
Cite this article:   
LI Xue-Mei,WANG Li-Hong,SONG Yi-Bin. A Hybrid Constrained Semi Supervised Clustering Algorithm[J]. , 2011, 24(3): 452-456.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2011/V24/I3/452
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn