模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2013, Vol. 26 Issue (11): 1026-1032    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Online Local Adaptive Fuzzy C-Means Clustering Algorithm
WU Xiao-Yan,CHEN Song-Can
College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016

Download: PDF (591 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  An online local adaptive fuzzy C-means (OLAFCM) algorithm for high dimensional data is proposed based on fuzzy C-means (FCM) and local adaptive clustering (LAC). Through assigning corresponding weights to its attributes,OLAFCM can make each cluster distribute in a subspace spanned by the combination of different attributes. Thus,the proposed algorithm not only avoids the risk of loss of information encountered in global dimensionality reduction techniques,but also is suitable for clustering data streams. Compared to state-of-the-art partition-based online clustering algorithms using global dimensionality reduction methods,the proposed algorithm has better performance on artificial and real datasets.
Key wordsFuzzy C-Means (FCM)      Local Adaptive Clustering (LAC)      Online Local Adaptive Fuzzy C-Means (OLAFCM)     
Received: 16 July 2012     
ZTFLH: TP391.4  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
WU Xiao-Yan
CHEN Song-Can
Cite this article:   
WU Xiao-Yan,CHEN Song-Can. Online Local Adaptive Fuzzy C-Means Clustering Algorithm[J]. , 2013, 26(11): 1026-1032.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2013/V26/I11/1026
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn