模式识别与人工智能
Wednesday, Apr. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2014, Vol. 27 Issue (2): 153-159    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Integration of Random Subspace and Min-Max Modular SVM
YU Yi, WU Jiao-Gao, LI Yun
School of Computer Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023

Download: PDF (537 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  The min-max modular support vector machine (M3-SVM) is a powerful tool for dealing with large-scale data. To improve the classification performance of M3-SVM for unblanced data with high dimension, several random subspace strategies are analyzed and combined with M3-SVM to reduce the dimensionality and add the ensemble mechanism on feature level. Thus, the min-max modular support vector machine with random subspace is proposed. The experimental results on real-world datasets including unbalanced data indicate that the proposed random subspace strategy enhances the classification of M3-SVM. Moreover, the diversity between sub-modules (base learner) in M3-SVM is discussed.
Key wordsRandom Subspace (RS)      Min-Max Modular Support Vector Machine (M3-SVM)      Diversity     
Received: 13 May 2013     
ZTFLH: TP 39  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YU Yi
WU Jiao-Gao
LI Yun
Cite this article:   
YU Yi,WU Jiao-Gao,LI Yun. Integration of Random Subspace and Min-Max Modular SVM[J]. , 2014, 27(2): 153-159.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2014/V27/I2/153
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn