Survey of Recommendation Based on Collaborative Filtering
LENG Ya-Jun1, LU Qing1, LIANG Chang-Yong2,3
1College of Economics and Management, Shanghai University of Electric Power, Shanghai 201300 2School of Management, Hefei University of Technology, Hefei 230009 3Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei University of Technology, Hefei 230009
Abstract Collaborative filtering is a widely used technique in recommender systems. Extensive studies are carried out on collaborative filtering. However, systematic summary of this field is scarce. In this paper, research of collaborative filtering is reviewed. The meaning and key issues of collaborative filtering, including sparsity, multiple-content and scalability, are described firstly, and then the solutions to the above key issues are introduced in detail. Finally, the future work of collaborative filtering is pointed out. The knowledge framework of collaborative filtering is introduced. It makes the research clues of collaborative filtering clear, provides a reference to other scholars, and improves the performance of personalized information services.
[1] Chen R M. Challenge, Value and Coping Strategy in the Big Data Era. Mobile Communications, 2012, 36(17): 14-15 (in Chinese) (陈如明.大数据时代的挑战、价值与应对策略.移动通信, 2012, 36(17): 14-15) [2] Borchers A, Herlocker J, Konstan J, et al. Ganging up on Information Overload. Computer, 1998, 31(4): 106-108 [3] Li C. Research on the Bottleneck Problems of Collaborative Filtering in E-commerce Recommender Systems. Ph. D Dissertation. Hefei, China: Hefei University of Technology, 2009 (in Chinese) (李 聪.电子商务推荐系统中协同过滤瓶颈问题研究.博士学位论文.合肥:合肥工业大学, 2009) [4] Resnick P, Varian H R. Recommender Systems. Communications of the ACM, 1997, 40(3): 56-58 [5] Zenebe A, Norcio A F. Representation, Similarity Measures and Aggregation Methods Using Fuzzy Sets for Content-Based Recommender Systems. Fuzzy Sets and Systems, 2009, 160(1): 76-94 [6] Schafer J B, Konstan J A, Riedl J. E-commerce Recommendation Applications. Data Mining and Knowledge Discovery, 2001, 5(1/2): 115-153 [7] Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749 [8] Xia P Y. Research on Collaborative Filtering Algorithm of Persona-lized Recommendation Technology. Ph. D Dissertation. Qingdao, China: Ocean University of China, 2011 (in Chinese) (夏培勇.个性化推荐技术中的协同过滤算法研究.博士学位论文.青岛:中国海洋大学, 2011) [9] Su X N, Yang J L, Deng S H, et al. Theory and Technology of Data Mining. Beijing, China: Scientific and Technical Documentation Press, 2003 (in Chinese) (苏新宁,杨建林,邓三鸿,等.数据挖掘理论与技术.北京:科学技术文献出版社, 2003) [10] Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York, USA: ACM Press, 1997 [11] Xu H L, Wu X, Li X D, et al. Comparison Study of Internet Re-commendation System. Journal of Software, 2009, 20(2): 350-362 (in Chinese) (许海玲,吴 潇,李晓东,等.互联网推荐系统比较研究.软件学报, 2009, 20(2): 350-362) [12] Jeong B, Lee J, Cho H. An Iterative Semi-explicit Rating Method for Building Collaborative Recommender Systems. Expert Systems with Applications, 2009, 36(3): 6181-6186 [13] de Campos L M, Fernández-Luna J M, Huete J F, et al. Combining Content-Based and Collaborative Recommendations: A Hybrid Approach Based on Bayesian Networks. International Journal of Approximate Reasoning, 2010, 51(7): 785-799 [14] Karypis G. Evaluation of Item-Based Top-N Recommendation Algorithms // Proc of the 10th International Conference on Information and Knowledge Management. Atlanta, USA, 2001: 247-254 [15] Liang C Y, Leng Y J, Wang Y S, et al. Research on Group Re-commendation in E-commerce Recommender Systems. Chinese Journal of Management Science, 2013, 21(3): 153-158 (in Chinese) (梁昌勇,冷亚军,王勇胜,等.电子商务推荐系统中群体用户推荐问题研究.中国管理科学, 2013, 21(3): 153-158) [16] Herlocker J L, Konstan J A, Borchers A, et al. An Algorithmic Framework for Performing Collaborative Filtering // Proc of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Berkeley, USA, 1999: 230-237 [17] Herlocker J, Konstan J A, Riedl J. An Empirical Analysis of Design Choices in Neighborhood-Based Collaborative Filtering Algorithms. Information Retrieval, 2002, 5(4): 287-310 [18] Kim H N, El-Saddik A, Jo G S. Collaborative Error-Reflected Models for Cold-Start Recommender Systems. Decision Support Systems, 2011, 51(3): 519-531 [19] Leung C W K, Chan S C F, Chung F L. A Collaborative Filtering Framework Based on Fuzzy Association Rules and Multiple-Level Similarity. Knowledge and Information Systems, 2006, 10(3): 357-381 [20] Goldberg D, Nichols D, Oki B M, et al. Using Collaborative Fil-tering to Weave an Information Tapestry. Communications of the ACM, 1992, 35(12): 61-70 [21] Resnick P, Iacovou N, Suchak M, et al. GroupLens: An Open Architecture for Collaborative Filtering of Netnews // Proc of the ACM Conference on Computer Supported Cooperative Work. Cha-pel Hill, USA, 1994: 175-186 [22] Konstan J A, Miller B N, Maltz D, et al. GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM, 1997, 40(3): 77-87 [23] Miller B N, Riedl J T, Konstan J A. Experiences with Grouplens: Making Usenet Useful Again // Proc of the USENIX Winter Technical Conference. Anaheim, USA, 1997: 219-231 [24] Breese J S, Heckerman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering // Proc of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco, USA, 1998: 43-52 [25] Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms // Proc of the 10th International Conference on World Wide Web. Hong Kong, China, 2001: 285-295 [26] Papagelis M, Plexousakis D, Kutsuras T. Alleviating the Sparsity Problem of Collaborative Filtering Using Trust Inferences // Proc of the 3rd International Conference on Trust Management. Paris, France, 2005: 224-239 [27] Barragáns-Martínez A B, Costa-Montenegro E, Burguillo-Rial J C, et al. A Hybrid Content-Based and Item-Based Collaborative Filtering Approach to Recommend TV Programs Enhanced with Singular Value Decomposition. Information Sciences, 2010, 180(22): 4290-4311 [28] Kim H N, Ji A T, Ha I, et al. Collaborative Filtering Based on Collaborative Tagging for Enhancing the Quality of Recommendation. Electronic Commerce Research and Applications, 2010, 9(1): 73-83 [29] Yu L, Liu L, Li X F. A Hybrid Collaborative Filtering Method for Multiple-Interests and Multiple-Content Recommendation in E-commerce. Expert Systems with Applications, 2005, 28(1): 67-77 [30] Albadvi A, Shahbazi M. A Hybrid Recommendation Technique Based on Product Category Attributes. Expert Systems with Applications, 2009, 36(9): 11480-11488 [31] Su J H, Wang B W, Hsiao C Y, et al. Personalized Rough-Set-Based Recommendation by Integrating Multiple Contents and Collaborative Information. Information Sciences, 2010, 180(1): 113-131 [32] Sun X H. Research of Sparsity and Cold Start Problem in Colla-borative Filtering. Ph. D Dissertation. Hangzhou, China: Zhejiang University, 2005 (in Chinese) (孙小华.协同过滤系统的稀疏性与冷启动问题研究.博士学位论文.杭州:浙江大学, 2005) [33] Deng A L, Zhu Y Y, Shi B L. A Collaborative Filtering Recommendation Algorithm Based on Item Rating Prediction. Journal of Software, 2003, 14(9): 1621-1628 (in Chinese) (邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法.软件学报, 2003, 14(9): 1621-1628) [34] Li C, Liang C Y, Ma L. A Collaborative Filtering Recommendation Algorithm Based on Domain Nearest Neighbor. Journal of Computer Research and Development, 2008, 45(9): 1532-1538 (in Chinese) (李 聪,梁昌勇,马 丽.基于领域最近邻的协同过滤推荐算法.计算机研究与发展, 2008, 45(9): 1532-1538) [35] Zhang F, Chang H Y. Employing BP Neural Networks to Alleviate the Sparsity Issue in Collaborative Filtering Recommendation Algorithms. Journal of Computer Research and Development, 2006, 43(4): 667-672 (in Chinese) (张 锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题.计算机研究与发展, 2006, 43(4): 667-672) [36] Zhang J Y, Pu P. A Recursive Prediction Algorithm for Collaborative Filtering Recommender Systems // Proc of the ACM Conference on Recommender Systems. Minneapolis, USA, 2007: 57-64 [37] Leng Y J, Liang C Y, Lu Q, et al. Collaborative Filtering Recommendation Algorithm Based on Neighbor Rating Imputation. Computer Engineering, 2012, 38(21): 56-58, 66 (in Chinese) (冷亚军,梁昌勇,陆 青,等.基于近邻评分填补的协同过滤推荐算法.计算机工程, 2012, 38(21): 56-58, 66) [38] Su X Y, Khoshgoftaar T M, Greiner R. A Mixture Imputation-Boosted Collaborative Filter // Proc of the 21st International Florida Artificial Intelligence Research Society Conference. Coconut Grove, USA, 2008: 312-316 [39] Zhou J F, Tang X, Guo J F. An Optimized Collaborative Filtering Recommendation Algorithm. Journal of Computer Research and Development, 2004, 41(10): 1842-1847 (in Chinese) (周军锋,汤 显,郭景峰.一种优化的协同过滤推荐算法.计算机研究与发展, 2004, 41(10): 1842-1847) [40] Zhang G W, Li D Y, Li P, et al. A Collaborative Filtering Recommendation Algorithm Based on Cloud Model. Journal of Software, 2007, 18(10): 2403-2411 (in Chinese) (张光卫,李德毅,李 鹏,等.基于云模型的协同过滤推荐算法.软件学报, 2007, 18(10): 2403-2411) [41] Luo H, Niu C Y, Shen R M, et al. A Collaborative Filtering Framework Based on Both Local User Similarity and Global User Similarity. Machine Learning, 2008, 72(3): 231-245 [42] Anand D, Bharadwaj K K. Utilizing Various Sparsity Measures for Enhancing Accuracy of Collaborative Recommender Systems Based on Local and Global Similarities. Expert Systems with Applications, 2011, 38(5): 5101-5109 [43] Choi K, Suh Y. A New Similarity Function for Selecting Neighbors for Each Target Item in Collaborative Filtering. Knowledge-Based Systems, 2013, 37: 146-153 [44] Kaleli C. An Entropy-Based Neighbor Selection Approach for Co-llaborative Filtering. Knowledge-Based Systems, 2014, 56: 273-280 [45] Jeong B, Lee J, Cho H. Improving Memory-Based Collaborative Filtering via Similarity Updating and Prediction Modulation. Information Sciences, 2010, 180(5): 602-612 [46] Leng Y J, Liang C Y, Ding Y, et al. Method of Neighborhood Formation in Collaborative Filtering. Pattern Recognition and Artificial Intelligence, 2013, 26(10): 968-974 (in Chinese) (冷亚军,梁昌勇,丁 勇,等.协同过滤中一种有效的最近邻选择方法.模式识别与人工智能, 2013, 26(10): 968-974) [47] Gao Y, Qi H, Liu J, et al. A Collaborative Filtering Recommendation Algorithm Combining Probabilistic Relational Models and User Grade. Journal of Computer Research and Development, 2008, 45(9): 1463-1469 (in Chinese) (高 滢,齐 红,刘 杰,等.结合似然关系模型和用户等级的协同过滤推荐算法.计算机研究与发展, 2008, 45(9): 1463-1469) [48] Melville P, Mooney R J, Nagarajan R. Content-Boosted Collaborative Filtering for Improved Recommendations // Proc of the 18th National Conference on Artificial Intelligence. Edmonton, Canada, 2002: 187-192 [49] Lee T Q, Park Y, Park Y T. A Time-Based Approach to Effective Recommender Systems Using Implicit Feedback. Expert Systems with Applications, 2008, 34(4): 3055-3062 [50] Liu D R, Lai C H, Lee W J. A Hybrid of Sequential Rules and Collaborative Filtering for Product Recommendation. Information Sciences, 2009, 179(20): 3505-3519 [51] Cai Q, Han D M, Li H S, et al. Personalized Resource Recommendation Based on Tags and Collaborative Filtering. Computer Science, 2014, 41(1): 69-71, 110 (in Chinese) (蔡 强,韩东梅,李海生,等.基于标签和协同过滤的个性化资源推荐.计算机科学, 2014, 41(1): 69-71, 110) [52] Chen J, Yin J. A Collaborative Filtering Recommendation Algorithm Based on Influence Sets. Journal of Software, 2007, 18(7): 1685-1694 (in Chinese) (陈 健,印 鉴.基于影响集的协作过滤推荐算法.软件学报, 2007, 18(7): 1685-1694) [53] George T, Merugu S. A Scalable Collaborative Filtering Framework Based on Co-clustering // Proc of the 5th IEEE International Conference on Data Mining. 2005. DOI: 10.1109/ICDM.2005.14 [54] Lee J S, Olafsson S. Two-Way Cooperative Prediction for Collaborative Filtering Recommendations. Expert Systems with Applications, 2009, 36(1): 5353-5361 [55] Wang J, de Vries A P, Reinders M J T. Unifying User-Based and Item-Based Collaborative Filtering Approaches by Similarity Fusion // Proc of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Seattle, USA, 2006: 501-508 [56] Liang C Y, Leng Y J. Collaborative Filtering Based on Information-Theoretic Co-clustering. International Journal of Systems Science, 2014, 45(3): 589-597 [57] Aggarwal C C, Wolf J L, Wu K L, et al. Horting Hatches an Egg: A New Graph-Theoretic Approach to Collaborative Filtering // Proc of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, USA, 1999: 201-212 [58] Yang X W, Guo Y, Liu Y, et al. A Survey of Collaborative Fil-tering Based Social Recommender Systems. Computer Communications, 2014, 41: 1-10 [59] Zhou T, Ren J, Medo M, et al. Bipartite Network Projection and Personal Recommendation. Physical Review E, 2007. DOI: 10.1103/PhysRevE.76.046115 [60] Zeng W, Zhu Y X, Lü L Y, et al. Negative Ratings Play a Positive Role in Information Filtering. Physica A: Statistical Mechanics and Its Applications, 2011, 390(23/24): 4486-4493 [61] Pan H Y, Lin H F, Zhao J. Collaborative Filtering Algorithm Based on Matrix Partition and Interest Variance. Journal of the China Society for Scientific and Technical Information, 2006, 25(1): 49-54 (in Chinese) (潘红艳,林鸿飞,赵 晶.基于矩阵划分和兴趣方差的协同过滤算法.情报学报, 2006, 25(1): 49-54) [62] Goldberg K, Roeder T, Gupta D, et al. Eigentaste: A Constant Time Collaborative Filtering Algorithm. Information Retrieval, 2001, 4(2): 133-151 [63] Hatami M, Pashazadeh S. Enhancing Prediction in Collaborative Filtering-Based Recommender Systems. International Journal of Computer Sciences and Engineering, 2014, 2(1): 48-51 [64] Yang B, Lei Y, Liu D, et al. Social Collaborative Filtering by Trust // Proc of the 23rd International Joint Conference on Artificial Intelligence. Beijing, China, 2013: 2747-2753 [65] Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Systems. Computer, 2009, 42(8): 30-37 [66] Koren Y, Bell R. Advances in Collaborative Filtering // Ricci F, Rokach R, Shapira B, et al., eds. Recommender Systems Handbook. New York, USA: Springer, 2011: 145-186 [67] Linden G, Smith B, York J. Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing, 2003, 7(1): 76-80 [68] Yu K, Schwaighofer A, Tresp V, et al. Probabilistic Memory-Based Collaborative Filtering. IEEE Trans on Knowledge and Data Engineering, 2004, 16(1): 56-69 [69] Russell S, Yoon V. Applications of Wavelet Data Reduction in a Recommender System. Expert Systems with Applications, 2008, 34(4): 2316-2325 [70] Acilar A M, Arslan A. A Collaborative Filtering Method Based on Artificial Immune Network. Expert Systems with Applications, 2009, 36(4): 8324-8332 [71] Sarwar B M, Karypis G, Konstan J, et al. Recommender Systems for Large-Scale E-commerce: Scalable Neighborhood Formation Using Clustering[EB/OL]. [2013-10-25]. http://www.grouplens.org/papers/pdf/sarwar_cluster.pdf [72] Li T, Wang J D, Ye F Y, et al. Collaborative Filtering Recommendation Algorithm Based on Clustering Basal Users. Systems Engineering and Electronics, 2007, 29(7): 1178-1182 (in Chinese) (李 涛,王建东,叶飞跃,等.一种基于用户聚类的协同过滤推荐算法.系统工程与电子技术, 2007, 29(7): 1178-1182) [73] Yu X, Li M Q. Effective Hybrid Collaborative Filtering Model Based on PCA-SOM. Systems Engineering-Theory & Practice, 2010, 30(10): 1850-1854 (in Chinese) (郁 雪,李敏强.基于PCA-SOM的混合协同过滤模型.系统工程理论与实践, 2010, 30(10): 1850-1854) [74] Leng Y J, Liang C Y, Lu W X. Clustering of Web Users Based on an Improved Affinity Propagation Algorithm. Journal of the China Society for Scientific and Technical Information, 2012, 31(9): 993-997 (in Chinese) (冷亚军,梁昌勇,陆文星.基于改进近邻传播算法的Web用户聚类.情报学报, 2012, 31(9): 993-997) [75] O'Connor M, Herlocker J. Clustering Items for Collaborative Fil-tering[EB/OL]. [2013-10-25]. http://www.cin.ufpe.br/~idal/rs/oconner_m.pdf [76] Deng A L, Zuo Z Y, Zhu Y Y. Collaborative Filtering Recommendation Algorithm Based on Item Clustering. Mini-Micro Systems, 2004, 25(9): 1665-1670 (in Chinese) (邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法.小型微型计算机系统, 2004, 25(9): 1665-1670) [77] Li Q, Myaeng S H, Kim B M. A Probabilistic Music Recommender Considering User Opinions and Audio Features. Information Processing and Management, 2007, 43(2): 473-487 [78] Wu M L, Chang C H, Liu R Z. Integrating Content-Based Fil-tering with Collaborative Filtering Using Co-clustering with Augmented Matrices. Expert Systems with Applications, 2014, 41(6): 2754-2761 [79] Wu H, Wang Y J, Wang Z, et al. Two-Phase Collaborative Fil-tering Algorithm Based on Co-clustering. Journal of Software, 2010, 21(5): 1042-1054 (in Chinese) (吴 湖,王永吉,王 哲,等.两阶段联合聚类协同过滤算法.软件学报, 2010, 21(5): 1042-1054) [80] Sarwar B, Karypis G, Konstan J, et al. Application of Dimensionality Reduction in Recommender System-A Case Study[EB/OL]. [2013-10-25]. http://www.dtic.mil/get-tr-doc/pdf?AD=ADA439541 [81] Vozalis M G, Margaritis K G. Using SVD and Demographic Data for the Enhancement of Generalized Collaborative Filtering. Information Sciences, 2007, 177(15): 3017-3037 [82] Chen G, Wang F, Zhang C S. Collaborative Filtering Using Orthogonal Nonnegative Matrix Tri-factorization. Information Processing and Management, 2009, 45(3): 368-379 [83] Luo X, Xia Y N, Zhu Q S. Incremental Collaborative Filtering Recommender Based on Regularized Matrix Factorization. Knowledge-Based Systems, 2012, 27: 271-280 [84] Yu J H, Yang W Q. Multivariate Statistical Analysis and Its Application. Guangzhou, China: Sun Yat-Set University Press, 2005 (in Chinese) (余锦华,杨维权.多元统计分析与应用.广州:中山大学出版社, 2005) [85] Kim D, Yum B J. Collaborative Filtering Based on Iterative Principal Component Analysis. Expert Systems with Applications, 2005, 28(4): 823-830 [86] Lee J S, Jun C H, Lee J, et al. Classification-Based Collaborative Filtering Using Market Basket Data. Expert Systems with Applications, 2005, 29(3): 700-704 [87] Papagelis M, Rousidis I, Plexousakis D, et al. Incremental Co-llaborative Filtering for Highly-Scalable Recommendation Algorithms // Proc of the 15th International Symposium on Foundations of Intelligent Systems. Saratoga, USA, 2005: 553-561 [88] Luo X, Xia Y N, Zhu Q S, et al. Boosting the K-Nearest-Neighborhood Based Incremental Collaborative Filtering. Knowledge-Based Systems, 2013, 53: 90-99 [89] Li C, Liang C Y. Incremental Updating Mechanism of Collaborative Filtering in Accordance with User Interest Changes. Journal of the China Society for Scientific and Technical Information, 2010, 29(1): 59-66 (in Chinese) (李 聪,梁昌勇.适应用户兴趣变化的协同过滤增量更新机制.情报学报, 2010, 29(1): 59-66) [90] Leng Y J, Liang C Y, Zhang E Q, et al. A Collaborative Filtering Recommendation Algorithm Based on Item-Class Preference. Journal of the China Society for Scientific and Technical Information, 2011, 30(7): 714-720 (in Chinese) (冷亚军,梁昌勇,张恩桥,等.基于项类偏好的协同过滤推荐算法.情报学报, 2011, 30(7): 714-720) [91] Zhang H P, Li L B, Li X, et al. Collaborative Filtering Recommendation Algorithm Based on Item-Class Rating. Journal of the China Society for Scientific and Technical Information, 2008, 27(2): 218-223 (in Chinese) (张海鹏,李烈彪,李 仙,等.基于项目分类预测的协同过滤推荐算法.情报学报, 2008, 27(2): 218-223) [92] Papagelis M, Plexousakis D, Rousidis I, et al. Qualitative Analysis of User-Based and Item-Based Prediction Algorithms for Recommendation Systems[EB/OL]. [2013-10-25]. http://www.ics.forth.gr/isl/publications/paperlink/hdms04_camera_ready_submitted.pdf [93] Jones K S. A Statistical Interpretation of Term Specificity and Its Application in Retrieval. Journal of Documentation, 1972, 28(1): 11-21 [94] Su X Y, Khoshgoftaar T M. A Survey of Collaborative Filtering Techniques[EB/OL]. [2013-11-01]. http://www.hindawi.com/journals/aai/2009/421425/ [95] Lam S K, Riedl J. Shilling Recommender Systems for Fun and Profit // Proc of the 13th International Conference on World Wide Web. New York, USA, 2004: 393-402 [96] Mobasher B, Burke R, Bhaumik R, et al. Effective Attack Models for Shilling Item-Based Collaborative Filtering Systems // Proc of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, USA, 2005: 13-23 [97] Bell R M, Koren Y. Improved Neighborhood-Based Collaborative Filtering // Proc of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007: 7-14 [98] Ahn H J. A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold-Starting Problem. Information Sciences, 2008, 178(1): 37-51 [99] Liu H F, Hu Z, Mian A, et al. A New User Similarity Model to Improve the Accuracy of Collaborative Filtering. Knowledge-Based Systems, 2014, 56: 156-166 [100] Schafer J B, Frankowski D, Herlocker J, et al. Collaborative Fil- tering Recommender Systems // Brusilovsky P, Kobsa A, Nejdl W, eds. The Adaptive Web. New York, USA: Springer, 2007: 291-324 [101] Kim H N, Ha I, Lee K S, et al. Collaborative User Modeling for Enhanced Content Filtering in Recommender Systems. Decision Support Systems, 2011, 51(4): 772-781 [102] Herlocker J L, Konstan J A, Terveen L G, et al. Evaluating Co-llaborative Filtering Recommender Systems. ACM Trans on Information Systems, 2004, 22(1): 5-53 [103] Herlocker J L, Konstan J A, Riedl J. Explaining Collaborative Filtering Recommendations // Proc of the ACM Conference on Computer Supported Cooperative Work. Philadelphia, USA, 2000: 241-250 [104] Zhang F, Sun X D, Chang H Y, et al. Research on Privacy-Preserving Two-Party Collaborative Filtering Recommendation. Acta Electronica Sinica, 2009, 37(1): 84-89 (in Chinese) (张 锋,孙雪冬,常会友,等.两方参与的隐私保护协同过滤推荐研究.电子学报, 2009, 37(1): 84-89) [105] Polat H, Du W L. Privacy-Preserving Collaborative Filtering Using Randomized Perturbation Techniques // Proc of the 3rd IEEE International Conference on Data Mining. Melbourne, USA, 2003: 625-628 [106] Canny J. Collaborative Filtering with Privacy // Proc of the IEEE Symposium on Security and Privacy. Berkeley, USA, 2002: 45-57 [107] Lü X J. Research on Intelligent Recommender System Based on Cloud Computing. Master Dissertation. Hefei, China: Anhui University, 2012 (in Chinese) (吕雪骥.基于云计算平台的智能推荐系统研究.硕士学位论文.合肥:安徽大学, 2012) [108] He J M. Research on Method of Listening to the Voice of Customers from the Web Community in Internet. Ph. D Dissertation. Hefei, China: Hefei University of Technology, 2010 (in Chinese) (何建民.面向网络社区聆听客户声音方法研究.博士学位论文.合肥:合肥工业大学, 2010)