|
|
Double-Level Absolute Reduction for Multi-granulation Rough Sets |
DENG Dayong1, HUANG Houkuan2 |
1.Xingzhi College, Zhejiang Normal University, Jinhua 321004 2.School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044 |
|
|
Abstract Multi-granulation rough set is a rough set model for heterogenous data in essence. However, it is still not employed to deal with heterogenous data. From the viewpoints of absolute attribute reduction, double-level absolute reduction for multi-granulation rough sets is proposed, including multi-granulation absolute recducts and multi-granulation absolute granulation reducts, and properties of double-level absolute reduction are analyzed from the perspective of heterogenous data. The algorithms for double-level absolute reduction are presented. Theoretical analysis and example show the validation of multi-granulation absolute reducts, multi-granulation absolute granulation reducts and double-level absolute reducts.
|
Received: 25 July 2016
|
|
Fund:Supported by National Natural Science Foundation of China (No.61572442,61473030), Natural Science Foundation of Zhejiang Province (No.LY15F020012) |
About author:: DENG DayongCorresponding author, born in 1968, Ph.D.,associate professor.His research interests include rough sets,granular computing and data mining. HUANG Houkuan, born in 1940, master, professor. His research interests include artificial intelligence, data mining and intelligent computing. |
|
|
|
[1] PAWLAK Z.Rough Sets.International Journal of Computer and Information Sciences, 1982, 11(5): 341-356. [2] PAWLAK Z, SKOWRON A.Rudiments of Rough Sets.Information Sciences, 2007, 177(1): 3-27. [3] ZIAKO W.Variable Precision Rough Sets Model. Journal of Compu-ter and System Sciences, 1993, 46(1): 39-59. [4] 冯 林,李天瑞,余志强.连续值属性决策表中的可变精度粗糙集模型及属性约简.计算机科学, 2010, 37(9): 205-208. (FENG L, LI T R, YU Z Q.Attributes Reduction Based on the Variable Precision Rough Set in Decision Tables Containing Conti-nuous-Valued Attributes.Computer Science, 2010, 37(9): 205-208.) [5] ZHU W, WANG F Y.Reduction and Axiomization of Covering Ge-neralized Rough Sets.Information Sciences, 2003,152: 217-230. [6] 张灵均,徐久成,李双群,等.相斥邻域的覆盖粗糙集实值属性约简.山东大学学报(理学版), 2012, 47(1): 77-82. (ZHANG L J, XU J C, LI S Q, et al. Numerical Attribute Reduction of Mutex Neighborhood Covering Rough Set Theory. Journal of Shandong University(Natural Science), 2012, 47(1): 77-82.) [7] YAO Y Y, WONG S K M.A Decision Theoretic Framework for Approximating Concepts. International Journal of Man-Machine Studies, 1992, 37(6): 793-809. [8] 刘 盾,姚一豫,李天瑞.三枝决策粗糙集.计算机科学, 2011, 38(1): 246-250. (LIU D, YAO Y Y, LI T R.Three-Way Decision-Theoretic Rough Sets. Computer Science, 2011, 38(1): 246-250.) [9] DUBOIS D, PRADE H. Rough Fuzzy Sets and Fuzzy Rough Sets. International Journal of General Systems, 1990, 17(2/3): 191-209. [10] 徐菲菲,苗夺谦,魏 莱,等.基于互信息的模糊粗糙集属性约简.电子与信息学报, 2008, 30(6): 1372-1375. (XU F F, MIAO D Q, WEI L, et al.Mutual Information-Based Algorithm for Fuzzy-Rough Attribute Reduction. Journal of Electronics & Information Technology, 2008, 30(6): 1372-1375.) [11] LIN T Y.Neighborhood Systems: A Qualitative Theory for Fuzzy and Rough Sets[M/OL].[2016-06-25]. http://xanadu.cs.sjsu.edu/~tylin/publications/paperList/94.pdf. [12] HU Q H, ZHANG L, ZHANG D, et al. Measuring Relevance between Discrete and Continuous Features Based on Neighborhood Mutual Information. Expert Systems with Applications: An International Journal, 2011, 38(9): 10737-10750. [13] SHI K Q, ZHAO J L .Function S-Rough Sets and Security-Authentication of Hiding Law.Science in China(Information Science),2008, 51(7): 924-935. [14] SHI K Q, YAO B X. Function S-Rough Sets and Law Identifica-tion. Science in China(Information Science), 2008, 51(5): 499-510. [15] QIAN Y H, LIANG J Y, YAO Y Y, et al.MGRS: A Multi-granulation Rough Set. Information Sciences, 2010, 180(6): 949-970. [16] 张 明,唐振民,徐维艳,等.可变多粒度粗糙集模型.模式识别与人工智能, 2012, 25(4): 709-720. (ZHANG M, TANG Z M, XU W Y, et al. Variable Multigranulation Rough Set Model.Pattern Recognition and Artificial Intelligence, 2012, 25(4): 709-720.) [17] 邓大勇,陈 林.并行约简与F-粗糙集 // 苗夺谦,王国胤,姚一豫,等,编.云模型与粒计算.北京:科学出版社, 2012: 210-228. (DENG D Y, CHEN L. Parallel Reducts and F-Rough Sets // MIAO D Q, WANG G Y, YAO Y Y, et al., eds. Cloud Model and Granular Computing.Beijing, China: Science Press, 2012: 210-228.) [18] 陈 林.粗糙集中不同粒度层次下的并行约简及决策.硕士学位论文.金华:浙江师范大学, 2013. (CHEN L.Parallel Reducts and Decision in Various Levels of Granularity.Master Dissertation.Jinhua,China: Zhejiang Normal University, 2013.) [19] 邓大勇,裴明华,黄厚宽.F-粗糙集方法对概念漂移的度量.浙江师范大学学报(自然科学版), 2013, 36(3): 303-308. (DENG D Y, PEI M H, HUANG H K. The F-Rough Sets Approaches to the Measures of Concept Drift. Journal of Zhejiang Normal University(Natural Sciences), 2013, 36(3): 303-308.) [20] 邓大勇,徐小玉,黄厚宽.基于并行约简的概念漂移探测.计算机研究与发展, 2015, 52(5): 1071-1079. (DENG D Y, XU X Y, HUANG H K.Concept Drifting Detection for Categorical Evolving Data Based on Parallel Reducts. Journal of Computer Research and Development,2015,52(5): 1071-1079.) [21] 顾力平,杨习贝.基于一般二元关系的多粒度粗糙集模型.南京航空航天大学学报, 2013, 45(1): 124-129. (GU L P, YANG X B. Multigranulation Rough Set Models Based on General Binary Relations. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(1): 124-129.) [22] 李 聪.多粒度模糊粗糙集研究.数学杂志, 2016, 36(1): 124-134.
(LI C. The Study on Multi-granulation Fuzzy Rough Set. Journal of Mathematics, 2016, 36(1): 124-134.) [23] 桑妍丽,钱宇华.一种悲观多粒度粗糙集中的粒度约简算法.模式识别与人工智能, 2012, 25(3): 361-366. (SAN Y L, QIAN Y H.A Granular Space Reduction Approach to Pessimistic Multi-granulation Rough Sets.Pattern Recognition and Artificial Intelligence, 2012, 25(3): 361-366.) [24] 桑 林,李续武.基于可变相容粒空间的多粒度覆盖粗糙集模型.计算机技术与发展, 2015, 25(8): 35-38. (SANG L,LI X W.Multi-granule Covering Rough Sets Model Based on Variable Precision Tolerant-Granule Space.Computer Technology and Development, 2015, 25(8): 35-38.) [25] 安 虹.区间值信息系统多粒度粗糙集拓展模型的知识约简.硕士学位论文.临汾:山西师范大学, 2014. (AN H.Knowledge Reduction Based on Multigranulation Rough Set Extended Model in Interval Valued Information System.Master Dissertation. Linfen, China: Shanxi Normal University, 2014.) |
|
|
|