模式识别与人工智能
Wednesday, Apr. 30, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2017, Vol. 30 Issue (11): 983-994    DOI: 10.16451/j.cnki.issn1003-6059.201711003
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Target Recognition Algorithm for Maritime Surveillance Radars Based on Clustering and Random Reference Classifier
FAN Xueman, HU Shengliang, HE Jingbo
1.Electronics Engineering College, Naval University of Engineering, Wuhan 430033

Download: PDF (1004 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  To improve the generalization ability of maritime surveillance radars in complicatedly interferential environment, a dynamic ensemble selection algorithm based on k-medoids clustering and random reference classifier(KMRRC) is proposed. Firstly, a pool of base classifiers are generated through Bagging technique. Secondly, k-medoids clustering is used to divided all the base classifiers into several clusters based on pairwise diversity metric. Then, the RRC model for each base classifier is constructed on the basis of validation dataset. Finally, the RRC model is employed to select some of the most competent classifiers from each cluster for ensemble and decision making. The parameters of KMRRC are determined by optimization experiment based on the self-built high resolution range profile(HRRP) dataset, and the performance of KMRRC is compared with nine ensemble methods and the base classification algorithm using the HRRP dataset and other seventeen UCI datasets in Java environment with a Weka stand-alone library. Besides, the influence of the diversity measures on the performance of KMRRC is further studied. The feasibility of KMMRRC in the field of target recognition for maritime surveillance radars is verified by experiments.
Key wordsk-medoids      Random Reference Classifier      Dynamic Ensemble Selection      Target Recognition     
Received: 18 April 2017     
ZTFLH: TN 181  
Fund:Supported by National Natural Science Foundation of China(No.61401493)
About author:: 范学满(通讯作者),男,1989年生,博士研究生,主要研究方向为集成学习、雷达目标识别.E-mail:oucfanxm@163.com.
胡生亮,男,1974年生,博士,教授,主要研究方向为无源对抗.E-mail:HGDHSL@sina.com.
贺静波,男,1979年生,博士,讲师,主要研究方向为随机微分理论及应用.E-mail:hjb_1979@163.com.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
FAN Xueman
HU Shengliang
HE Jingbo
Cite this article:   
FAN Xueman,HU Shengliang,HE Jingbo. Target Recognition Algorithm for Maritime Surveillance Radars Based on Clustering and Random Reference Classifier[J]. , 2017, 30(11): 983-994.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/10.16451/j.cnki.issn1003-6059.201711003      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2017/V30/I11/983
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn