[1] HARALICK R M. Statistical and Structural Approaches to Texture. Proceedings of the IEEE, 2005, 67(5): 786-804.
[2] TSAI I S, LIN C H, LIN J J. Applying an Artificial Neural Network to Pattern Recognition in Fabric Defects. Textile Research Journal, 1995, 65(3): 123-130.
[3] CHETVERIKOV D, HANBURY A. Finding Defects in Texture Using Regularity and Local Orientation. Pattern Recognition, 2002, 35(10): 2165-2180.
[4] KASPARIS T, TZANNES N S, BASSIOUNI M, et al. Texture Description Using Fractal and Energy Features. Computers & Electrical Engineering, 1995, 21(1): 21-32.
[5] CHAN C H, PANG G K H. Fabric Defect Detection by Fourier Analysis. IEEE Transactions on Industry Applications, 2000, 36(5): 1267-1276.
[6] MAK K L, PENG P. An Automated Inspection System for Textile Fabrics Based on Gabor Filters. Robotics and Computer-Integrated Manufacturing, 2008, 24(3): 359-369.
[7] YANG X Z, PANG G K H, YUNG N H C. Discriminative Fabric Defect Detection Using Adaptive Wavelets. Optical Engineering, 2002, 41(12): 3116-3126.
[8] ZHANG Y, LU Z Y, LI J. Fabric Defect Classification Using Radial Basis Function Network. Pattern Recognition Letters, 2010, 31(13): 2033-2042.
[9] CHETVERIKOV D. Structural Defects: General Approach and Application to Textile Inspection // Proc of the 15th International Conference on Pattern Recognition. Washington, USA: IEEE, 2000: 521-524.
[10] CHETVERIKOV D. Pattern Regularity as a Visual Key. Image and Vision Computing, 2000, 18(12): 925-985.
[11] SERAFIM A F L. Multiresolution Pyramids for Segmentation of Natural Images Based on Autoregressive Models: Application to Calf Leather Classification // Proc of the International Conference on Industrial Electronics, Control and Instrumentation. Washington, USA: IEEE, 2002, III: 1842-1847.
[12] HAJIMOWLANA S H, MUSCEDERE R, JULLIEN G A, et al. 1D Autoregressive Modeling for Defect Detection in Web Inspection Systems // Proc of the Midwest Symposium on Circuits and Systems. Washington, USA: IEEE, 1998: 318-321.
[13] COHEN F S, FAN Z G, ATTALI S. Automate Inspection of Textile Fabrics Using Textural Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 13(8): 803-808.
[14] DENG H W, CLAUSI D A. Gaussian MRF Rotation-Invariant Features for Image Classification. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2004, 26(7): 951-955.
[15] NGAN H Y T, PANG G K H, YUNG S P, et al. Wavelet Based Methods on Patterned Fabric Defect Detection. Pattern Recognition, 2005, 38(4): 559-576.
[16] NGAN H Y T, PANG G K H. Novel Method for Patterned Fabric Inspection Using Bollinger Bands. Optical Engineering, 2006, 45(8): 187-202.
[17] NGAN H Y T, PANG G K H. Regularity Analysis for Patterned Texture Inspection. IEEE Transactions on Automation Science and Engineering, 2009, 6(1): 131-144.
[18] TSANG C S C, NGAN H Y T, PANG G K H. Fabric Inspection Based on the ELO Rating Method. Pattern Recognition, 2016, 51: 378-394.
[19] NG M K, NGAN H Y T, YUAN X M, et al. Patterned Fabric Inspection and Visualization by the Method of Image Decomposition. IEEE Transactions on Automation Science and Engineering, 2014, 11(3): 943-947.
[20] OZDEMIR S, ERCIL A. Markov Random Fields and Karhunen-Loeve Transforms for Defect Inspection of Textile Products // Proc of the IEEE Conference on Emerging Technologies and Factory Automation. Washington, USA: IEEE, 2002: 697-703.
[21] CHAN H Y, RAJU C, SARI-SARRAF H, et al. A General Approach to Defect Detection in Textured Materials Using a Wavelet Domain Model and Level Sets. Proceedings of SPIE, 2005. DOI: 10.1117/12.633204.
[22] GONG Y N, HUA J X, HUANG X B. Fabric Defect Detection Using GMRF Model. Journal of Donghua University(English Edition), 1999, 16(3): 10-13.
[23] 杨晓波.基于GMRF模型的统计特征畸变织物疵点识别.纺织学报, 2013, 34(4): 137-142.
(YANG X B, Fabric Defect Detection of Statistic Aberration Feature Based on GMRF Model. Journal of Textile Research, 2013, 34(4): 137-142.)
[24] 梁久祯,顾程熙,常兴治.基于相似关系的纺织品瑕疵检测方法.模式识别与人工智能, 2017, 30(5): 456-464.
(LIANG J Z, GU C X, CHANG X Z. Fabric Defect Detection Based on Similarity Relation. Pattern Recognition and Artificial Intelligence, 2017, 30(5): 456-464.) |