[1] 徐 宁,洪先龙.超大规模集成电路物理设计理论与算法.北京:清华大学出版社, 2009.
(XU N, HONG X L. Very Large Scale Integration Physical Design Theory and Method. Beijing, China: Tsinghua University Press, 2009.)
[2] SIDDIQI U F, SAIT S M. A Game Theory Based Post-Processing Method to Enhance VLSI Global Routers. IEEE Access, 2017, 5: 1328-1339.
[3] HELD S, M LLER D, ROTTER D, et al . Global Routing with Timing Constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(2): 406-419.
[4] SCHEIFELE R. RC-Aware Global Routing//Proc of the 35th IEEE/ACM International Conference on Computer-Aided Design. Washington, USA: IEEE, 2016. DOI: 10.1145/2966986.2967067.
[5] SCHEIFELE R. Steiner Trees with Bounded RC-Delay//Proc of the International Workshop on Approximation and Online Algorithms. Berlin, Germany: Springer, 2014: 224-235.
[6] COULSTON C S. Constructing Exact Octagonal Steiner Minimal Tree//Proc of the 13th ACM Great Lakes Symposium on VLSI. New York, USA: ACM, 2003: 1-6.
[7] THURBER A P, XUE G L. Computing Hexagonal Steiner Trees Using PCX for VLS//Proc of the 6th IEEE International Conference on Electronics, Circuits and Systems. Washington, USA: IEEE, 1999, I: 381-384.
[8] SAMANTA T, GHOSAL P, RAHAMAN H, et al. A Heuristic Method for Constructing Hexagonal Steiner Minimal Trees for Routing in VLS//Proc of the International Symposium on Circuits and Systems. Washington, USA: IEEE, 2006: 1788-1791.
[9] ZHU Q, ZHOU H, JING T, et al . Spanning Graph-Based Nonrectilinear Steiner Tree Algorithms. IEEE Transactions on Computer-Ai-ded Design of Integrated Circuits and Systems, 2005, 24(7): 1066-1075.
[10] YAN J T. Timing-Driven Octilinear Steiner Tree Construction Ba sed on Steiner-Point Reassignment and Path Reconstruction. ACM Transactions on Design Automation of Electronic Systems, 2008, 13(2): 26:1-26:18.
[11] SAMANTA T, RAHAMAN H, DASGUPTA P. Near-Optimal Y-Routed Delay Trees in Nanometric Interconnect Design. IET Computers & Digital Techniques, 2011, 5(1): 36-48.
[12] GAREY M R, JOHNSON D S. The Rectilinear Steiner Tree Pro blem Is NP-Complete. SIAM Journal on Applied Mathematics, 1977, 32(4): 826-834.
[13] BHATTACHARYA P, KHAN A, SARKAR S K. A Global Routing Optimization Scheme Based on ABC Algorithm//KUNDU M K, MOHAPATRA D P, KONAR A, et al. , eds. Advanced Computing, Networking and Informatics. Berlin,German: Springer, 2014, II: 189-197.
[14] KHAN A, LAHA S, SARKAR S K. A Novel Particle Swarm Optimization Approach for VLSI Routing//Proc of the 3rd IEEE International Advance Computing Conference. Washington, USA: IEEE, 2013: 258-262.
[15] LIU G G, CHEN G L, GUO W Z, et al . DPSO-Based Rectilinear Steiner Minimal Tree Construction Considering Bend Reduction//Proc of the 7th International Conference on Natural Computation. Washington, USA: IEEE, 2011. DOI: 10.1109/ICNC.2011.6022221.
[16] LIU G G, CHEN G L, GUO W Z. DPSO Based Octagonal Steiner Tree Algorithm for VLSI Routing//Proc of the 5th IEEE International Conference on Advanced Computational Intelligence. Wa shington , USA: IEEE, 2012. DOI: 10.1109/ICACI.2012.6463191.
[17] LIU G G, HUANG X, GUO W Z, et al . Multilayer Obstacle-Avoiding X-Architecture Steiner Minimal Tree Construction Based on Particle Swarm Optimization. IEEE Transactions on Cybernetics, 2015, 45(5): 989-1002.
[18] EBERHART R, KENNEDY J. A New Optimizer Using Particles Swarm Theory//Proc of the 6th International Symposium on Micro Machine and Human Science. Washington, USA: IEEE, 1995: 39-43.
[19] HUANG X, GUO W Z, LIU G G, et al . FH-OAOS: A Fast Four-Step Heuristic for Obstacle-Avoiding Octilinear Steiner Tree Construction. ACM Transactions on Design Automation of Electronic Systems, 2016. DOI: 10.1145/2856033.
[20] HUANG X, GUO W Z, LIU G G, et al . MLXR: Multi-layer Obstacle-Avoiding X-Architecture Steiner Tree Construction for VLSI Routing. Science China Information Sciences, 2017, 60(1): 19102:1-19102:3.
[21] LIU G G, GUO W Z, LI R R, et al . XGRouter: High-Quality Global Router in X-Architecture with Particle Swarm Optimization. Frontiers of Computer Science, 2015, 9(4): 576-594.
[22] 马 军,杨 波,马绍汉.近乎最佳的Manhattan型Steiner树近似算法.软件学报, 2000, 11(2): 260-264.
(MA J, YANG B, MA S H. A Near-Optimal Approximation -Algorithm for Manhattan Steiner Tree. Journal of Software, 2000, 11(2): 260-264.)
[23] RUDOLPH G. Convergence Analysis of Canonical Genetic Algorithms. IEEE Transactions on Neural Networks, 1994, 5(1): 96-101.
[24] WARME D, WINTER P, ZACHARIASEN M. GeoSteiner Home-page [DB/OL].[2017-11-30]. http://geosteiner.net.
[25] RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255. |