|
|
Unsupervised Bipedal Gait Identification Based on Gait Subspace |
GAO Lijun1,2, WANG Buyun1,2, XU Dezhang1,2 |
1.School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 2.Wuhu Ahpu Robot Technology Research Institute Co. LTD, Wuhu 241007 |
|
|
Abstract Foot pressure information is utilized to identify human gait in the study of walking. However, the bipedal pressure signal collected by a multi-sensor array has the problems of high redundancy, weak correlation and strong noise interference. To identify the movement states of human lower limbs, singular value decomposition is adopted to fuse multi-source observation data of foot pressure and extract the characteristic signal of gait motion. Then, the characteristic signal is expanded into a gait information subspace, and the feature points are clustered based on fuzzy C-means clustering algorithm. Since the feature points and the signal sampling sequence are mapped one by one, the gait movement process is divided by the clustering result in the time domain. Experimental results show that five typical movement states of human lower limbs can be effectively identified by the proposed method.
|
Received: 25 December 2017
|
|
Fund:Supported by National Natural Science Foundation of China (No.61741101), Natural Science Foundation of Anhui Province(No.1608085QF154), Key Project of Science and Technology of Anhui Province(No.1604a0902125), Scientific Research Foundation of Anhui Polytechnic University for the Introduction of Talents(No.2015YQQ005) |
Corresponding Authors:
XU Dezhang, Ph.D., professor. His research interests include robot information perception, signal acquisition and application.
|
About author:: GAO Lijun, master student. His research interests include robot information perception. WANG Buyun, Ph.D., lecturer. His research interests include robot information perception. |
|
|
|
[1] 李 峰,吴智政,钱晋武.下肢康复机器人步态轨迹自适应控制.仪器仪表学报, 2014, 35(9): 2027-2036. (LI F, WU Z Z, QIAN J W. Trajectory Adaptation Control for Lower Extremity Rehabilitation Robot. Chinese Journal of Scientific Instrument, 2014, 35(9): 2027-2036.) [2] LI G C, GONG Y L, YUAN W. Human Gait Recognition Based on Earth Movers Distance and Zernike Moments. Procedia CIRP, 2016, 56: 461-464. [3] 钱志辉,周 亮,任 雷,等.具有仿生距下关节和跖趾关节的完全被动步行机.吉林大学学报(工学版), 2018, 48(1): 205-211. (QIAN Z H, ZHOU L, REN L, et al. Completely Passive Walking Machine with Bionic Subtalar Joint and Matatarsal Phalangeal Joint. Journal of Jilin University(Engineering and Technology Edition),2018, 48(1): 205-211.) [4] 贲晛烨,徐 森,王科俊.行人步态的特征表达及识别综述.模式识别与人工智能, 2012, 25(1): 71-81. (BEN X Y, XU S, WANG K J. Review on Pedestrian Gait Feature Expression and Recognition. Pattern Recognition and Artificial Inte-lligence, 2012, 25(1): 71-81.) [5] HERAVI H, EBRAHIMI A, OLYAEE E. Detecting Gait Phases from RGB-D Images Based on Hidden Markov Model. Journal of Medical Signals & Sensors, 2016, 6(3): 158-165. [6] 张 勤,李岳炀,李贻斌,等.基于Kinect的学步期幼儿自然步态提取.自动化学报, 2018. DOI: 10.16383/j.aas.2018.C160729. (ZHANG Q, LI Y Y, LI Y B, et al. Extraction of Toddler's Natural Gait Based on Kinect. Acta Automatica Sinica, 2018. DOI: 10.16383/j.aas.2018.C160729.) [7] 赵志杰,孙小英,金雪松,等.多重图像轮廓特征结合的步态识别算法.哈尔滨工业大学学报, 2016, 48(4): 182-188. (ZHAO Z J, SUN X Y, JIN X S, et al. Gait Recognition Based on Multiple Image Silhouette Feature Combination. Journal of Harbin Institute of Technology, 2016, 48(4): 182-188.) [8] LOOSE H, ORLOWSKI K. Model Based Determination of Gait Parameters Using IMU Sensor Data. Solid State Phenomena, 2016,251: 61-67. [9] SEEBER M, SCHERER R, WAGNER J, et al. High and Low Gamma EEG Oscillations in Central Sensorimotor Areas Are Conversely Modulated during the Human Gait Cycle. NeuroImage, 2015, 112: 318-326. [10] 夏 懿,马祖长,姚志明,等.基于足底压力分布时空HOG特征的步态识别方法.模式识别与人工智能, 2013, 26(6): 529-536. (XIA Y, MA Z C, YAO Z M, et al. Gait Recognition Based on Spatio-Temporal HOG Feature of Plantar Pressure Distribution. Pattern Recognition and Artificial Intelligence, 2013, 26(6): 529-536.) [11] SHAIKH M F, SALCIC Z, WANG K K. Analysis and Selection of the Force Sensitive Resistors for Gait Characterisation // Proc of the 6th IEEE International Conference on Automation, Robotics and Applications. Washington, USA: IEEE, 2015: 370-375. [12] BERCEANU C, MARGHITU D B, GUDAVALLI M R, et al. Gait Analysis Parameters of Healthy Human Subjects with Asymmetric Loads. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19(8): 855-863. [13] 赵丽娜,刘作军,苟 斌,等.基于隐马尔可夫模型的动力型下肢假肢步态预识别.机器人, 2014, 36(3): 337-341. (ZHAO L N, LIU Z J, GOU B, et al. Gait Pre-recognition of Dynamic Lower Limb Prosthesis Based on Hidden Markov Model. Robot, 2014, 36(3): 337-341.) [14] MA H, LIAO W H. Human Gait Modeling and Analysis Using a Semi-markov Process with Ground Reaction Forces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(6): 597-607. [15] CRAWFORD S. The Anatomy of a COP Gait Line and Computer Aided Gait Analysis[C/OL]. [2017-11-15]. http://www.seg elpodiatry.com/pdf-articles/AnatomyCOP.pdf. [16] 方 正,张兴亮,王 超,等.基于青年人足底压力测试的步态实验研究.生物医学工程学杂志, 2014, 31(6): 1278-1282, 1293. (FANG Z, ZHANG X L, WANG C, et al. Experiment Gait Study Based on the Plantar Pressure Test for the Young People. Journal of Biomedical Engineering, 2014, 31(6): 1278-1282, 1293.) [17] CAU N, CIMOLIN V, GALLI M, et al. Center of Pressure Displacements during Gait Initiation in Individuals with Obesity. Journal of Neuroengineering and Rehabilitation, 2014. DOI: https://doi.org/10.1186/1743-0003-11-82. [18] SAADEH M Y, TRABIA M B. Identification of a Force-Sensing Resistor for Tactile Applications. Journal of Intelligent Material Systems and Structures, 2013, 24(7): 813-827. [19] 郭谋发,徐丽兰,缪希仁,等.采用时频矩阵奇异值分解的配电开关振动信号特征量提取方法.中国电机工程学报, 2014, 34(28): 4990-4997. (GUO M F, XU L L, MIAO X R, et al. A Vibration Signal Feature Extraction Method for Distribution Switches Based on Singular Value Decomposition of Time-Frequency Matrix. Proceedings of the CSEE, 2014, 34(28): 4990-4997.) [20] 赵学智,陈统坚,叶邦彦.变结构SVD算法及其在信号分离中的应用.机械工程学报, 2017, 53(22): 11-21. (ZHAO X Z, CHEN T J, YE B Y. Variable Structure SVD Algo- rithm and Its Application to Signal Separation. Journal of Mechanical Engineering, 2017, 53(22): 11-21.) [21] LU W J, YAN Z Z. Improved FCM Algorithm Based on K-means and Granular Computing. Journal of Intelligent Systems, 2015, 24(2): 215-222. [22] 高新波,裴继红,谢维信.模糊C-均值聚类算法中加权指数m的研究.电子学报, 2000, 28(4): 80-83. (GAO X B, PEI J H, XIE W X. A Study of Weighting Exponent m in a Fuzzy C-means Algorithm. Acta Electronic Sinica, 2000, 28(4): 80-83.) [23] XU D K, TIAN Y J. A Comprehensive Survey of Clustering Algorithms. Annals of Data Science, 2015, 2(2): 165-193. |
|
|
|