[1] CADENA C, CARLONE L, CARRILLO H, et al. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332.
[2] ENDRES F, HESS J, STURM J, et al. 3D Mapping with an RGB-D Camera. IEEE Transactions on Robotics, 2014, 30(1): 177-187.
[3] MUR-ARTAL R, MONTIEL J M M, TARDÓS J D, et al. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163.
[4] NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion: Real-Time Dense Surface Mapping and Tracking // Proc of the IEEE International Symposium on Mixed and Augmented Reality. Washington, USA: IEEE, 2011: 127-136.
[5] NIEβNER M, ZOLLHÖFER M, IZADI S, et al. Real-Time 3D Reconstruction at Scale Using Voxel Hashing. ACM Transactions on Graphics(TOG), 2013, 32(6). DOI: 10.1145/2508363.2508374.
[6] MUR-ARTAL R, TARDOS J D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
[7] KLEIN G, MURRAY D. Parallel Tracking and Mapping for Small AR Workspaces // Proc of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Washington, USA: IEEE, 2007: 225-234.
[8] ALBERTO E. Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer, 1989, 22(6): 46-57.
[9] HADSELL R, BAGNELL J A, HUBER D, et al. Space-Carving Kernels for Accurate Rough Terrain Estimation. International Journal of Robotics Research, 2010, 29(8): 981-996.
[10] HERBERT M, CAILLAS C, KROTKOV E, et al. Terrain Mapping for a Roving Planetary Explorer // Proc of the IEEE International Conference on Robotics and Automation. Washington, USA: IEEE, 1989: 997-1002.
[11] TRIEBEL R, PFAFF P, BURGARD W. Multi-level Surface Maps for Outdoor Terrain Mapping and Loop Closing // Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington, USA: IEEE, 2006: 2276-2282.
[12] MORAVEC H P. Robot Spatial Perception by Stereoscopic Vision and 3D Evidence Grids. Technical Report, CMU-RI-TR-96-34. Pittsburgh, USA: Carnegie Mellon University, 1996.
[13] PAYEUR P, HÉBERT P, LAURENDEAU D, et al. Probabilistic Octree Modeling of a 3D Dynamic Environment // Proc of the IEEE International Conference on Robotics and Automation. Washington, USA: IEEE, 1997: 1289-1296.
[14] FAIRFIELD N, KANTOR G, WETTERGREEN D. Real-Time SLAM with Octree Evidence Grids for Exploration in Underwater Tunnels. Journal of Field Robotics, 2007, 24(1/2): 3-21.
[15] HORNUNG A, WARM K M, BENEWITZ M, et al. Octomap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees. Autonomous Robots, 2013, 34(3): 189-206.
[16] MAIER O, HORNUNG A, BENNEWITZ M. Real-Time Navigation in 3D Environments Based on Depth Camera Data // Proc of the 12th IEEE-RAS International Conference on Humanoid Robots. Washington, USA: IEEE, 2012: 692-697.
[17] WHELAN T, KAESS M, LEONARD J J, et al. Deformation-Based Loop Closure for Large Scale Dense EGB-D SLAM // Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington, USA: IEEE, 2013: 548-555.
[18] YANG S N, YANG S W, YI X D. Real-Time Globally Consistent 3D Grid Mapping // Proc of the IEEE International Conference on Robotics and Biomimetics. Washington, USA: IEEE, 2017: 929-935.
[19] 侯荣波,魏 武,黄 婷,等.基于ORB-SLAM 的室内机器人定位和三维稠密地图构建.计算机应用, 2017, 37(5): 1439-1444.
(HOU R B, WEI W, HUANG T, et al. Indoor Robot Localization and 3D Dense Mapping Based on ORB-SLAM. Journal of Computer Applications, 2017, 37(5): 1439-1444.)
[20] YGUEL M, AYCARD O, LAUGIER C. Update Policy of Dense Maps: Efficient Algorithms and Sparse Representation // LAUGIER C, SIEGWART R, eds. Field and Service Robotics. Berlin, Germany: Springer. 2008: 23-33. |