[1] BULLING A, BLANKE U, SCHIELE B. A Tutorial on Human Activity Recognition Using Body-Worn Inertial Sensors. ACM Computing Surveys, 2014, 46(3). DOI: 10.1145/2499621.
[2] SCHEURER S, TEDESCO S, BROWN K N, et al. Human Activity Recognition for Emergency First Responders via Body-Worn Inertial Sensors // Proc of the 14th IEEE International Conference on Wearable and Implantable Body Sensor Networks. Washington, USA: IEEE, 2017: 5-8.
[3] SANCHEZ V G, PFEIFFER C F, SKEIE N O. A Review of Smart House Analysis Methods for Assisting Older People Living Alone. Journal of Sensor and Actuator Networks, 2017, 6(3). DOI: 10.3390/jsan6030011.
[4] YANG Z, WU C S, ZHOU Z, et al. Mobility Increases Localizability: A Survey on Wireless Indoor Localization Using Inertial Sensors. ACM Computing Surveys, 2015, 47(3). DOI: 10.1145/2676430.
[5] HAMMERLA N Y, PLOETZ T. Let′s (not) Stick Together: Pairwise Similarity Biases Cross-Validation in Activity Recognition // Proc of the ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, USA: ACM, 2015: 1041-1051.
[6] WANG Z L, WU D H, GRAVINA R, et al. Kernel Fusion Based Extreme Learning Machine for Cross-Location Activity Recognition. Information Fusion, 2017, 37: 1-9.
[7] HOSEINI-TABATABAEI S A, GLUHAK A, TAFAZOLLI R. A Survey on Smartphone-Based Systems for Opportunistic User Context Recognition. ACM Computing Surveys, 2013, 45(3). DOI: 10.1145/2480741.2480744.
[8] PHAN T. Improving Activity Recognition via Automatic Decision Tree Pruning // Proc of the ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, USA: ACM, 2014: 827-832.
[9] KRISHNAN N C, PANCHANATHAN S. Analysis of Low Resolution Accelerometer Data for Continuous Human Activity Recognition // Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Washington, USA: IEEE, 2008: 3337-3340.
[10] ZHENG L X, WU D H, RUAN X Y, et al. A Novel Energy-Efficient Approach for Human Activity Recognition. Sensors, 2017, 17(9). DOI: 10.3390/s17092064.
[11] ZHONG M Y, WEN J H, HU P Z, et al. Advancing Android Activity Recognition Service with Markov Smoother // Proc of the IEEE International Conference on Pervasive Computing and Communication Workshops. Washington, USA: IEEE, 2015: 38-43.
[12] ZHONG M Y, WEN J H, HU P Z, et al. Advancing Android Activity Recognition Service with Markov Smoother: Practical Solutions. Pervasive and Mobile Computing, 2017, 38: 60-76.
[13] YOUNES R, MARTIN T L, JONES M. Activity Classification at a Higher Level: What to Do After the Classifier Does Its Best? // Proc of the ACM International Symposium on Wearable Computers. New York, USA: ACM, 2015: 83-86.
[14] WANG C H, XU Y W, LIANG H, et al. WOODY: A Post-Process Method for Smartphone-Based Activity Recognition. IEEE Access, 2018, 6: 49611-49625.
[15] RABINER L, JUANG B. An Introduction to Hidden Markov Mo-dels. IEEE Assp Magazine, 1986, 3(3): 4-16.
[16] WEN J H, ZHONG M Y, INDULSKA J. Creating General Model for Activity Recognition with Minimum Labelled Data // Proc of the ACM International Symposium on Wearable Computers. New York, USA: ACM, 2015: 87-90.
[17] WEN J H, WANG Z Y. Learning General Model for Activity Re-cognition with Limited Labelled Data. Expert Systems with Applications, 2017, 74(15): 19-28.
[18] KIM Y J, KANG B N, KIM D. Hidden Markov Model Ensemble for Activity Recognition Using Tri-axis Accelerometer // Proc of the IEEE International Conference on Systems, Man, and Cybernetics. Washington, USA: IEEE, 2015: 3036-3041.
[19] 汪成亮,王小均.基于三轴传感器的老年人日常活动识别.电子学报, 2017, 45(3): 570-576.
(WANG C L, WANG X J. Daily Activity Recognition Based on Triaxial Accelerometer of Elderly People. Acta Electronica Sinica, 2017, 45(3): 570-576.)
[20] 王昌海,张建忠,徐敬东,等.基于HMM的动作识别结果可信度计算方法.通信学报, 2016, 37(5): 143-151.
(WANG C H, ZHANG J Z, XU J D, et al. Identifying the Confidence Level of Activity Recognition via HMM. Journal on Communications, 2016, 37(5): 143-151.)
[21] WANG C H, XU Y W, ZHANG J Z, et al. SW-HMM: a Method for Evaluating Confidence of Smartphone-Based Activity Recognition // Proc of the International Symposium on Parallel and Distributed Processing with Applications. Washington, USA: IEEE, 2016: 2086-2091. |