[1] QI B,JOHN V,LIU Z,et al.Use of Sparse Representation for Pedestrian Detection in Thermal Images//Proc of the IEEE Confe-rence on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2014:274-280.
[2] LIU Y C,HUANG S S,LU C H,et al.Thermal Pedestrian Detection Using Block LBP with Multi-level Classifier//Proc of the International Conference on Applied System Innovation.Washington,USA:IEEE, 2017:602-605.
[3] KHANDHEDIYA Y,SAV K,GAJJAR V.Human Detection for Night Surveillance using Adaptive Background Subtracted Image[C/OL].[2020-09-04].https://arxiv.org/ftp/arxiv/papers/1709/1709.09389.pdf.
[4] HEO D,LEE E,CHUL K B.Pedestrian Detection at Night Using Deep Neural Networks and Saliency Maps.Journal of Imaging Science and Technology,2017,61(6):060403-1-060403-9.
[5] REDMON J,FARHADI A.YOLO9000:Better,Faster,Stronger//Proc of the IEEE Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2017:6517-6525.
[6] GHOSE D,DESAI S M,BHATTACHARYA S,et al.Pedestrian Detection in Thermal Images Using Saliency Maps//Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2019:988-997.
[7] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks//Proc of the 28th International Conference on Neural Information Processing Systems.Cambridge,USA:The MIT Press,2015:91-99.
[8] LI N,BI H B,ZHANG Z,et al.Performance Comparison of Saliency Detection[J/OL].[2020-09-04].http://downloads.hindawi.com/journals/am/2018/9497083.pdf.
[9] GUO T T,HUYNH C P,SOLH M.Domain-Adaptive Pedestrian Detection in Thermal Images//Proc of the IEEE International Conference on Image Processing.Washington,USA:IEEE,2019:1660-1664.
[10] GUAN D Y,LUO X,CAO Y P,et al.Unsupervised Domain Adaptation for Multispectral Pedestrian Detection//Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2019:434-443
[11] MUNIR F,AZAM S,RAFIQUE M A,et al.Thermal Object Detection Using Domain Adaptation through Style Consistency[C/OL].[2020-09-04].https://arxiv.org/pdf/2006.00821.pdf.
[12] LIU J J,ZHANG S T,WANG S,et al.Multispectral Deep Neural Networks for Pedestrian Detection[C/OL].[2020-09-04].https://arxiv.org/pdf/1611.02644.pdf.
[13] LI C Y,SONG D,TONG R F,et al.Illumination-Aware Faster R-CNN for Robust Multispectral Pedestrian Detection.Pattern Re-cognition,2019,85:161-171.
[14] DEVAGUPTAPU C,AKOLEKAR N,SHARMA M M,et al.Bo-rrow from Anywhere:Pseudo Multi-modal Object Detection in Thermal Imagery//Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2019:1029-1038.
[15] LIU M Y,BREUEL T,KAUTZ J.Unsupervised Image-to-Image Translation Networks//Proc of the 31st International Conference on Neural Information Processing Systems.Cambridge,USA:The MIT Press,2017:700-708.
[16] ZHU J Y,PARK T,ISOLA P,et al.Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks//Proc of the IEEE International Conference on Computer Vision.Washington,USA:IEEE,2017:2242-2251.
[17] REDMON J,FARHADI A.YOLOv3:An Incremental Improvement[C/OL].[2020-09-04].https://arxiv.org/pdf/1804.02767.pdf.
[18] HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learning for Image Recognition//Proc of the IEEE Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2016:770-778.
[19] TIAN Z,SHEN C H,CHEN H,et al.FCOS:Fully Convolutional One-Stage Object Detection//Proc of the IEEE/CVF International Conference on Computer Vision.Washington,USA:IEEE,2019:9626-9635.
[20] HWANG S,PARK J,KIM N,et al.Multispectral Pedestrian Detection:Benchmark Dataset and Baseline//Proc of the IEEE Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2015:1037-1045.
[21] ZHU C C,HE Y H,SAVVIDES M.Feature Selective Anchor-Free Module for Single-Shot Object Detection//Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2019:840-849.
[22] DERAKHSHANI M M,MASOUDNIA S,SHAKER A H,et al.Assisted Excitation of Activations:A Learning Technique to Improve Object Detectors//Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2019:9193-9202.
[23] REZATOFIGHI H,TSOI N,GWAK J Y,et al.Generalized Intersection over Union:A Metric and a Loss for Bounding Box Regre-ssion//Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2019:658-666.
[24] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal Loss for Dense Object Detection.IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327.
[25] KONIG D,ADAM M,JARVERS C,et al.Fully Convolutional Region Proposal Networks for Multispectral Person Detection//Proc of the IEEE Conference on Computer Vision and Pattern Re-cognition.Washington,USA:IEEE,2017:241-250
[26] GUAN D Y,CAO Y P,YANG J X,et al.Fusion of Multispectral Data through Illumination-Aware Deep Neural Networks for Pedestrian Detection.Information Fusion,2019,50:148-157.
[27] KONG T,SUN F C,LIU H P,et al.FoveaBox:Beyound Anchor-Based Object Detection.IEEE Transactions on Image Processing,2020,29:7389-7398.
[28] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:Optimal Speed and Accuracy of Object Detection[C/ OL].[2020-09-04].https://arxiv.org/pdf/2004.10934.pdf.
[29] WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:A New Backbone That Can Enhance Learning Capability of CNN//Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2020:1571-1580.
[30] HE K M,ZHANG X Y,REN S Q,et al.Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition//Proc of the European Conference on Computer Vision.Berlin,Germany:Springer,2014:346-361.
[31] LIU S,QI L,QIN H F,et al.Path Aggregation Network for Instance Segmentation//Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2018:8759-8768. |