| [1] 卢湖川,李佩霞,王栋.目标跟踪算法综述.模式识别与人工智能, 2018, 31(1): 61-76.
(LU H C, LI P X, WANG D.Visual Object Tracking: A Survey. Pattern Recognition and Artificial Intelligence, 2018, 31(1): 61-76.)
[2] 杜晨杰,杨宇翔,伍瀚,等.旋转自适应的多特征融合多模板学习视觉跟踪算法.模式识别与人工智能, 2021, 34(9): 787-797.
(DU C J, YANG Y X, WU H, et al. Visual Tracking Algorithm Based on Rotation Adaptation, Multi-feature Fusion and Multi-template Learning. Pattern Recognition and Artificial Intelligence, 2021, 34(9): 787-797.)
[3] 姜文涛,刘晓璇,涂潮,等.空间异常适应性的目标跟踪.模式识别与人工智能, 2021, 34(5): 473-484.
(JIANG W Y, LIU X X, TU C, et al. Spatially Abnormal Adaptive Target Tracking. Pattern Recognition and Artificial Intelligence, 2021, 34(5): 473-484.)
[4] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-Convolutional Siamese Networks for Object Tracking // Proc of the European Conference on Computer Vision. Berlin, Germany: Sprin-ger, 2016: 850-865.
[5] LI B, WU W, WANG Q, et al. SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 4277-4286.
[6] MAYER C, DANELLJAN M, PAUDEL D P, et al. Learning Target Candidate Association to Keep Track of What not to Track // Proc of the IEEE/CVF International Conference on Computer Vision. Wa-shington, USA: IEEE, 2021: 13424-13434.
[7] CHEN X, YAN B, ZHU J W, et al. Transformer Tracking // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Re-cognition. Washington, USA: IEEE, 2021: 8122-8131.
[8] YAN B, PENG H W, FU J L, et al. Learning Spatio-Temporal Transformer for Visual Tracking // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2021: 10428-10437.
[9] XIE F, WANG C Y, WANG G T, et al. Learning Tracking Representations via Dual-Branch Fully Transformer Networks // Proc of the IEEE/CVF International Conference on Computer Vision Workshops. Washington, USA: IEEE, 2021: 2688-2697.
[10] LIN L T, FAN H, ZHANG Z P, et al. SwinTrack: A Simple and Strong Baseline for Transformer Tracking // Proc of the 36th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2022: 16743-16754.
[11] ZHANG H L, LIU M D, SONG X H, et al. Spatial Attention Inference Model for Cascaded Siamese Tracking with Dynamic Resi-dual Update Strategy. Computer Vision and Image Understanding, 2024, 248. DOI: 10.1016/j.cviu.2024.104125.
[12] GAO L, CHEN L K, LIU P, et al. Transformer-Based Visual Object Tracking via Fine-Coarse Concatenated Attention and Cross Concatenated MLP. Pattern Recognition, 2024, 146. DOI: 10.1016/j.patcog.2023.109964.
[13] NIE G H, WANG X M, YAN Z N, et al. Temporal Relation Transformer for Robust Visual Tracking with Dual-Memory Lear-ning. Applied Soft Computing, 2024, 167(A). DOI: 10.1016/j.asoc.2024.112229.
[14] MARVASTI-ZADEH S M, CHENG L, GHANEI-YAKHDAN H, et al. Deep Learning for Visual Tracking: A Comprehensive Survey. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 3943-3968.
[15] YE B T, CHANG H, MA B P, et al. Joint Feature Learning and Relation Modeling for Tracking: A One-Stream Framework // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 341-357.
[16] LAN J P, CHENG Z Q, HE J Y, et al. ProContEXT: Exploring Progressive Context Transformer for Tracking // Proc of the IEEE International Conference on Acoustics, Speech and Signal Proce-ssing. Washington, USA: IEEE, 2023. DOI: 10.1109/ICASSP49357.2023.10094971.
[17] SHI L T, ZHONG B N, LIANG Q H, et al. Explicit Visual Prompts for Visual Object Tracking. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(5): 4838-4846.
[18] XIE J X, ZHONG B N, MO Z Y, et al. Autoregressive Queries for Adaptive Tracking with Spatio-Temporal Transformers // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2024: 19300-19309.
[19] ZHU J W, CHEN X, DIAO H W, et al. Exploring Dynamic Transformer for Efficient Object Tracking. IEEE Transactions on Neural Networks and Learning Systems, 2025. DOI: 10.1109/TNNLS.2025.3545752.
[20] WANG Q W, ZHOU L Y, JIN P C, et al. TrackingMamba: Visual State Space Model for Object Tracking. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 16744-16754.
[21] ZENG W, JIN S, LIU W T, et al. Not All Tokens Are Equal: Human-Centric Visual Analysis via Token Clustering Transformer // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2022: 11091-11101.
[22] FU Z H, FU Z H, LIU Q J, et al. SparseTT: Visual Tracking with Sparse Transformers // Proc of the 31st International Joint Confe-rence on Artificial Intelligence. San Francisco, USA: IJCAI, 2022: 905-912.
[23] CUI Y T, JIANG C, WU G S, et al. MixFormer: End-to-End Tracking with Iterative Mixed Attention. IEEE Transactions on Pa-ttern Analysis and Machine Intelligence, 2024, 46(6): 4129-4146.
[24] GAO S Y, ZHOU C L, MA C, et al. AiATrack: Attention in Atten-tion for Transformer Visual Tracking // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 146-164.
[25] GAO S Y, ZHOU C L, ZHANG J.Generalized Relation Modeling for Transformer Tracking // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2023: 18686-18695.
[26] WANG J, YANG S, WANG Y Y.Dynamic Region-Aware Transformer Backbone Network for Visual Tracking. Engineering Applications of Artificial Intelligence, 2024, 133. DOI: 10.1016/j.engappai.2024.108329.
[27] ZHANG S, ZHANG D, ZOU Q.ATPTrack: Visual Tracking with Alternating Token Pruning of Dynamic Templates and Search Region. Neurocomputing, 2025. DOI: 10.1016/j.neucom.2025.129534.
[28] RAO Y M, ZHAO W L, LIU B L, et al. DynamicVIT: Efficient Vision Transformers with Dynamic Token Sparsification // Proc of the 35th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2021: 13937-13949.
[29] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image Is Worth 16×16 Words: Transformers for Image Recognition at Scale[C/OL].[2025-02-10]. https://arxiv.org/pdf/2010.11929.
[30] DU M J, DING S, JIA H J.Study on Density Peaks Clustering Based on k-Nearest Neighbors and Principal Component Analysis. Knowledge-Based Systems, 2016, 99: 135-145.
[31] MELAS-KYRIAZI L, RUPPRECHT C, LAINA I, et al. Deep Spec-tral Methods: A Surprisingly Strong Baseline for Unsupervised Semantic Segmentation and Localization // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2022: 8354-8365.
[32] FAN H, LIN L T, YANG F, et al. LaSOT: A High-Quality Ben-chmark for Large-Scale Single Object Tracking // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 5369-5378.
[33] HUANG L H, ZHAO X, HUANG K Q.GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1562-1577.
[34] MÜLLER M, BIBI A, GIANCOLA S, et al. TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 300-317.
[35] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common Objects in Context // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 740-755.
[36] WU Y, LIM J, YANG M H.Online Object Tracking: A Benchmark // Proc of the IEEE Conference on Computer Vision and Pa-ttern Recognition. Washington, USA: IEEE, 2013: 2411-2418.
[37] MUELLER M, SMITH N, GHANEM B.A Benchmark and Simulator for UAV Tracking // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 445-461.
[38] BHAT G, DANELLJAN M, VAN GOOL L, et al. Learning Discriminative Model Prediction for Tracking // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2019: 6181-6190.
[39] WANG N, ZHOU W G, WANG J, et al. Transformer Meets Tra-cker: Exploiting Temporal Context for Robust Visual Tracking // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2021: 1571-1580.
[40] SONG Z K, YU J Q, CHEN Y P, et al. Transformer Tracking with Cyclic Shifting Window Attention // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2022: 8781-8790.
[41] ZHANG M H, ZHANG Q Y, SONG W, et al. PromptVT: Promp-ting for Efficient and Accurate Visual Tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(8): 7373-7385.
[42] YAO J Z, WANG Z X, ZHANG J L, et al. Tracking in Tracking: An Efficient Method to Solve the Tracking Distortion. Engineering Applications of Artificial Intelligence, 2024, 135. DOI: 10.1016/j.engappai.2024.108698.
[43] WANG X M, NIE G H, MENG J X, et al. MIMTrack: In-Context Tracking via Masked Image Modeling. Proceedings of the AAAI Conference on Artificial Intelligence, 2025, 39(8): 7979-7987.
[44] WEI X, BAI Y F, ZHENG Y C, et al. Autoregressive Visual Tra-cking // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2023: 9697-9706. |