基于Widrow-Hoff神经网络的多指标推荐算法

张付志, 常俊风, 王栋

PDF(638 KB)
模式识别与人工智能 ›› 2011, Vol. 24 ›› Issue (2) : 233-242.
论文

基于Widrow-Hoff神经网络的多指标推荐算法

作者信息 +

Multi Criteria Recommendation Algorithm Based on Widrow-Hoff Neural Network

Author information +
History +

摘要

为解决传统的协同过滤推荐算法不能综合运用多个指标进行推荐的问题,通过引入多指标评分的概念对标准的协同过滤推荐算法进行扩展,提出一种基于Widrow-Hoff神经网络的多指标推荐算法.利用Widrow-Hoff最小二乘法自适应算法在进行系统辨识时的高精度拟合特性,提出一种基于Widrow-Hoff最小二乘法算法的用户偏好特征向量计算方法.利用用户偏好特征向量和空间距离矩阵度量用户相似度,以定位邻居集并为用户推荐最优项目.实验结果表明,本文算法可提高推荐精度,改进推荐质量.

Abstract

To solve the problem that the traditional collaborative filtering recommendation algorithm can not recommend with multiple criteria, a multicriteria recommendation algorithm based on Widrow-Hoff neural network is proposed by introducing the concept of multicriteria rating for extending the standard collaborative filtering algorithm. The Widrow-Hoff least mean square adaptive algorithm has the characteristics of hith accuracy fitting in the process of system identification. Based on that, an approach to compute user preferences eigenvector based on Widrow-Hoff LMS algorithm is proposed. Measuring users' similarity by adopting the user preferences eigenvector and spatial distance matrix so as to locate a neighbor set for the best recommendations. Experimental results show that the proposed algorithm improves the accuracy and the quality of recommendation.

关键词

Widrow-Hoff神经网络 / 推荐算法 / 多指标评分 / 相似度 / 用户偏好特征向量

Key words

Widrow-Hoff Neural Network / Recommendation Algorithm / Multiple Criteria Rating / Similarity / User Preference Eigenvector

引用本文

导出引用
张付志 , 常俊风 , 王栋. 基于Widrow-Hoff神经网络的多指标推荐算法. 模式识别与人工智能. 2011, 24(2): 233-242
ZHANG Fu-Zhi , CHANG Jun-Feng , WANG Dong. Multi Criteria Recommendation Algorithm Based on Widrow-Hoff Neural Network. Pattern Recognition and Artificial Intelligence. 2011, 24(2): 233-242

参考文献

PDF(638 KB)

1302

Accesses

0

Citation

Detail

段落导航
相关文章

/