崔玉玲
模式识别与人工智能. 2013, 26(11): 1033-1040.
PDF全文 (
)
可视化
收藏
为保证水平集图像分割算法的稳定性,传统水平集方法常采用重新初始化的方法或引入符号距离函数,但这两种方法存在计算量大或计算不稳定的问题.因此,提出一种基于改进符号距离函数的变分水平集图像分割算法.首先,改进已有的Double-Well型符号距离函数约束项,改进后的约束项可避免重新初始化、提高计算效率,同时也能更好地保证水平集函数演化过程的稳定.然后,利用基于全局灰度信息和局部灰度信息的活动轮廓模型构造能量泛函,该能量函数继承了全局模型和局部模型的优点,可驱动水平集函数准确演化至目标边界,且可动态调整组合权重.最后,引入高斯卷积运算,加快演化速度同时也对水平集函数起到平滑的作用.对人工合成和自然图像的数值实验及与同类模型的对比实验证明,提出的模型具有较高的分割准确度及对噪声和初始轮廓的鲁棒性.