模式识别与人工智能
2025年4月4日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2015, Vol. 28 Issue (6): 481-489    DOI: 10.16451/j.cnki.issn1003-6059.201506001
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
面向胎盘植入产前诊断的医学语义特征提取算法*
潘晓晓1,叶东毅1,颜建英2,张栋1,杨丹林2
1.福州大学 数学与计算机科学学院 福州 350108
2.福建省妇幼保健院 福州 350001
Algorithm for Feature Extraction with Effective Medical Meaning for the Prenatal Diagnosis of Placenta Accreta
PAN Xiao-Xiao1, YE Dong-Yi1, YAN Jian-Ying2, ZHANG Dong1, YANG Dan-Lin2
1.College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350001
2.Maternal and Child Health Hospital of Fujian Province, Fuzhou 350001

全文: PDF (481 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 胎盘植入由于其临床特征隐匿,尚无一种敏感性、特异性高的产前诊断手段,因此文中将数据的特征提取方法引入胎盘植入产前诊断领域,从特征相关性的角度,提出胎盘植入有效医学语义的多目标特征优化问题,并给出求解该问题的一种改进的非支配排序遗传算法II(NSGA-II).基于实际胎盘植入相关临床数据的计算结果表明,文中算法能从复杂的胎盘植入相关临床数据中提取具有胎盘植入有效语义的特征集合.经过接收者操作特征(ROC)曲线分析,提取的特征医学语义具有较高的诊断价值,可为产科医师研究胎盘植入的发病机制和及时产前诊断提供有效的辅助手段.文中研究还发现,一些临床生化检查指标具有重要作用,可作为胎盘植入产前诊断的有效依据.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘晓晓
叶东毅
颜建英
张栋
杨丹林
关键词 胎盘植入(PA)特征选择最大相关和最小冗余算法(mRMR)非支配排序遗传算法II(NSGA-II)    
Abstract:Due to inconspicuous clinical characteristics of placenta accreta, there is no prenatal diagnosis methods with high sensitivity and specificity in clinical medicine. In this paper, feature selection methodis introduced into the prenatal diagnosis of placenta accreta. From the view of feature correlation, a multi-objective feature optimization problem is formulated to extract features with effective medical meaning for the prenatal diagnosis of placenta accreta, and then an improved non-dominated sorting genetic algorithm II (NSGA-II) is described to solve this problem. The computational result based on real clinical data for placenta accreta shows that the proposed method can extract placenta accreta features with effective medical meaning from complex clinical data of placenta accreta. The analysis based on receiver operating characteristic (ROC) curve shows that medical meaning of the extracted features has high diagnostic values, and it can be an effective decision tool for obstetricians to study the pathogenesis of placenta accreta and to make a timely prenatal diagnosis. The study reveals that some biochemistry characteristics in real diagnosis are very important and it can provide a reliable criterion for the prenatal diagnosis of placenta accreta.
Key wordsPlacenta Accreta (PA)    Feature Selection    Max-Relevance and Min-Redundancy Algorithm (mRMR)    Non-dominated Sorting Genetic Algorithm II (NSGA-II)   
收稿日期: 2014-05-20     
ZTFLH: TP18  
基金资助:国家卫生和计划生育委员会科研基金项目(No.WKJ-FJ-09)资助
作者简介: 潘晓晓,女,1989年生,硕士研究生,主要研究方向为计算智能、数据挖掘.E-mail:419148662@qq.com.叶东毅(通讯作者),男,1964年生,教授,博士生导师,主要研究方向为计算智能、数据挖掘.E-mail:yiedy@fzu.edu.cn.颜建英,女,1967年生,教授,主任医师,主要研究方向为妇产科学.张栋,男,1981年生,博士,讲师,主要研究方向为计算机网络、人工智能.杨丹林,女,1985年生,主治医师,主要研究方向为妇产科学.
引用本文:   
潘晓晓,叶东毅,颜建英,张栋,杨丹林. 面向胎盘植入产前诊断的医学语义特征提取算法*[J]. 模式识别与人工智能, 2015, 28(6): 481-489. PAN Xiao-Xiao , YE Dong-Yi , YAN Jian-Ying , ZHANG Dong , YANG Dan-Lin. Algorithm for Feature Extraction with Effective Medical Meaning for the Prenatal Diagnosis of Placenta Accreta. , 2015, 28(6): 481-489.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201506001      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2015/V28/I6/481
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn