Stochastic Particle Swarm Optimization Algorithm with Embedded Cascading Chaotic Strategy
LI Sheng1, HE Ming-Hui2, LI Jian-Lin2, ZHANG Li2
1.Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, Urumqi 830091 2.Beijing Institute of Space Long March Vehicle, Beijing 100076
Abstract:Aiming at the premature convergence problem frequently occurring in complex optimization problems of particle swarm optimization (PSO) algorithms, an iteration equation of stochastic particle swarm evolution is proposed by importing the disturbed track factor. The statistical behavior of particles produced by the equation is ensured to approach certain convergence centre, while their dependence on the address of previous generation appears to be stochastic.Thus, it is possible for particle swarm to jump quickly or migrate instead of being trapped in the local extremum at early evolution. Meanwhile, the cascading chaotic strategy and the symmetric extremum perturbation strategy are employed to further enhance local convergence velocity and globe search capacities, respectively. Experimental results indicate that stochastic chaotic PSO algorithm composed by the proposed equation and the improved strategies is better than other homologous particle swarm optimization algorithms in robustness, convergence speed and accuracy.
[1] Kennedy J, Eberhart R C.Particle Swarm Optimization // Proc of the IEEE International Conference on Neural Networks.Perth, USA, 1995, IV: 1942-1948 [2] Jiao B, Lian Z G, Gu X S.A Dynamic Inertia Weight Particle Swarm Optimization Algorithm. Chaos, Solitons & Fractals, 2008, 37(3):698-705 [3] Zhan Z H, Zhang J, Li Y, et al. Adaptive Particle Swarm Optimization.IEEE Trans on Systems, Man, and Cybernetics: Cybernetics, 2009, 39(6): 1362-1381 [4] Liang J J, Qin A K, Suganthan P N, et al.Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Trans on Evolutionary Computation, 2006, 10(3): 281-295 [5] Richards M, Ventura D.Dynamic Sociometry in Particle Swarm Optimization // Proc of the 6th International Conference on Computational Intelligence and Natural Computing. Cary, USA, 2003: 1557-1560 [6] Kennedy J, Mendes R. Neighborhood Topologies in Fully Informed and Best of Neighborhood Particle Swarms. IEEE Trans on Systems, Man, and Cybernetics: Applications and Reviews, 2006, 36(4):515-519 [7] Liu W, Chen H X, Chen H N, et al.Improved Particle Swarm Optimizer Based on Predator-Prey Coevolution Model // Proc of the 3rd International Conference on Computational Intelligence and Industrial Application. Wuhan, China, 2010, VIII: 88-91 (in Chinese) (刘 微,陈贺新,陈瀚宁,等.基于生态捕食模型的改进粒子群算法 // 第三届计算智能与工业应用国际学术研讨会.武汉, 2010, VIII: 88-91) [8] Chen W N, Zhang J, Lin Y, et al. Particle Swarm Optimization with an Aging Leader and Challengers. IEEE Trans on Evolutionary Computation, 2012, 17(2): 241-258 [9] Kao Y T, Zahara E. A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions.Applied Soft Computing,2008, 8(2): 849-857 [10] Kiranyaz S, Ince T, Yildirim A, et al.Fractional Particle Swarm Optimization in Multidimensional Search Space.IEEE Trans on Systems, Man, and Cybernetics: Cybernetics, 2010, 40(2): 298-319 [11] Gao W F, Liu S Y, Jiao H H, et al. Particle Swarm Optimization with Search Operator of Artificial Bee Colony Algorithm. Control and Decision, 2012, 27(6): 833-838 (in Chinese) (高卫峰,刘三阳,焦合华,等.引入人工蜂群搜索算子的粒子群算法.控制与决策, 2012, 27(6): 833-838) [12] Wei Z,Wu L,Ge F Z, et al.Hybrid PSO Algorithm Based on Memetic Framework.Pattern Recognition and Artificial Intelligence, 2012, 25(2): 213-219 (in Chinese) (魏 臻,吴 雷,葛方振,等.基于Memetic框架的混合粒子群算法.模式识别与人工智能, 2012, 25(2): 213-219) [13] Clerc M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization // Proc of the Congress on Evolutionary Computation. Washington, USA, 1999, III: 1951-1957 [14] Hu W, Li Z S.A Simpler and More Effective Particle Swarm Optimization Algorithm. Journal of Software, 18(4): 861-868 (in Chinese) (胡 旺,李志蜀.一种更简化而高效的粒子群优化算法.软件学报, 2007, 18(4): 861-868) [15] Shi Y H, Eberhart R. A Modified Particle Swarm Optimizer // Proc of the IEEE World Congress on Computational Intelligence. Anchorage, USA, 1998: 69-73 [16] Lü Z S, Hou Z R.Particle Swarm Optimization with Adaptive Mutation.Acta Electronica Sinica, 2004, 32(3): 416-420 (in Chinese) (吕振肃,候志荣.自适应变异的粒子群优化算法.电子学报, 2004, 32(3): 416-420) [17] Lü Y P, Li S Z, Chen S L, et al. Particle Swarm Optimization Based on Adaptive Diffusion and Hybrid Mutation. Journal of Software, 2007, 18(11): 2740-2751 (in Chinese) (吕艳萍,李绍滋,陈水利,等.自适应扩散混合变异机制微粒群算法.软件学报, 2007, 18(11): 2740-2751) [18] Meng H J, Zheng P, Mei G H, et al.Particle Swarm Optimization Algorithm Based on Chaotic Series.Control and Decision, 2006, 21(3): 263-266 (in Chinese) (孟红记,郑 鹏,梅国晖,等.基于混沌序列的粒子群优化算法.控制与决策, 2006, 21(3): 263-266) [19] Zhou X Y, Wu Z J, Wang H, et al.Elite Opposition-Based Particle Swarm Optimization. Acta Electronica Sinica, 2013, 41(8): 1647-1652 (in Chinese) (周新宇,吴志健,王 晖,等.一种精英反向学习的粒子群优化算法.电子学报, 2013, 41(8): 1647-1652) [20] Zhu H M, Wu Y P.A PSO Algorithm with High Speed Convergence.Control and Decision, 2010, 25(1): 20-24, 30 (in Chinese) (朱海梅,吴永萍.一种高速收敛粒子群优化算法.控制与决策, 2010, 25(1): 20-24, 30) [21] Jin M, Lu H X. A Multi-subgroup Hierarchical Hybrid of Genetic Algorithm and Particle Swarm Optimization. Control Theory & Applications, 2013, 30(10): 1231-1238 (in Chinese) (金 敏,鲁华祥.一种遗传算法与粒子群优化的多子群分层混合算法.控制理论与应用, 2013, 30(10): 1231-1238) [22] Zhao X C, Liu G L , Liu H Q, et al. Particle Swarm Optimization Algorithm Based on Non-uniform Mutation and Multiple Stages Perturbation.Chinese Journal of Computers, 2014, 37(9): 2058-2070 (in Chinese) (赵新超,刘国莅,刘虎球,等.基于非均匀变异和多阶段扰动的粒子群优化算法.计算机学报, 2014, 37(9): 2058-2070) [23] Mendes R, Kennedy J, Neves J. The Fully Informed Particle Swarm: Simpler, Maybe Better. IEEE Trans on Evolutionary Computation, 2004, 8(3): 204-210