模式识别与人工智能
2025年4月4日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2017, Vol. 30 Issue (3): 279-288    DOI: 10.16451/j.cnki.issn1003-6059.201703010
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于行列联合选择矩阵分解的偏好特征提取*
雷恒鑫,刘惊雷
烟台大学 计算机与控制工程学院 烟台 264005
Preference Feature Extraction Based on Column Union Row Matrix Decomposition
LEI Hengxin, LIU Jinglei
School of Computer and Control Engineering, Yantai University, Yantai 264005

全文: PDF (1055 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对奇异值分解(SVD)分析偏好特征不够准确,有时出现不可解释的情况,文中提出利用行列联合选择(CUR)矩阵分解方法获取原始矩阵M(用户对产品的偏好)的低秩近似,提取用户和产品的潜在偏好.首先计算M中行和列的统计影响力得分,并抽取得分较高的若干列和若干行构成低维矩阵C和R,然后由M、C、R近似构造矩阵U,将高维空间中的偏好特征提取问题转化为低维空间中的矩阵分析问题,使其具有较好的可解释性和准确性.最后,通过理论分析和实验发现,与传统分解方法相比,CUR矩阵分解方法在偏好特征提取方面具有更高的准确度、更好的可解释性及更高的压缩率.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷恒鑫
刘惊雷
关键词 行列联合选择(CUR)矩阵分解 低秩近似 偏好特征 统计影响力得分 可解释性    
Abstract:Preference features can not be accurately analyzed and explained by singular value decomposition. Aiming at these problems, a column union row(CUR) matrix decomposition method is proposed to acquire a low-rank approximation of the original matrix M (user preferences for products) and extract the potential preferences of users and products. The statistics leverage score of matrix M is calculated firstly. And then, several rows and columns with higher scores are extracted to constitute low-dimensional matrix C and matrix R. Subsequently, the matrix U is constructed approximatively according to matrix M, C and R. By the proposed method, the extraction problem of preference feature in a high-dimensional space is transformed to the matrix analysis problem in a lower dimensional space. As a consequence, the CUR decomposition has better accuracy and interpretability. Finally, the theoretical analysis and experiment indicate that compared with the traditional decomposition methods, the CUR matrix decomposition method has higher accuracy, better interpretability and higher compression ratio for extracting preference feature.
Key wordsColumn Union Row(CUR) Matrix Decomposition    Low Rank Approximation    Preference Feature    Statistical Leverage Score    Interpretability   
收稿日期: 2016-05-13     
ZTFLH: TP 181  
基金资助:国家自然科学基金项目(No.61572419,61572418,61403328,61403329)、山东省自然科学基金项目( No.2015GSF115009,ZR2014FQ016,ZR2014FQ026,ZR2013FM011)资助
作者简介: 雷恒鑫,男,1993年生,硕士研究生,主要研究方向为矩阵分解方法在推荐系统和偏好特征提取中的应用.E-mail:leihengxin@msn.cn.
刘惊雷(通讯作者),男,1970年生,硕士,副教授,主要研究方向为人工智能、理论计算机科学.E-mail:jinglei_liu@sina.com.
引用本文:   
雷恒鑫,刘惊雷. 基于行列联合选择矩阵分解的偏好特征提取*[J]. 模式识别与人工智能, 2017, 30(3): 279-288. LEI Hengxin, LIU Jinglei. Preference Feature Extraction Based on Column Union Row Matrix Decomposition. , 2017, 30(3): 279-288.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201703010      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2017/V30/I3/279
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn