Abstract:Multiple image features provide more discriminative information of the scenes compared with individual feature, and thus the performance of loop closure detection(LCD) is improved. However, a suitable combination criterion is vital. A weighting method of multiple feature combination is proposed. The accuracy of LCD of the feature combination is expressed as the Rényi divergence of the distance distributions of true matches and false matches in the feature space. The optimal feature combination maximizes the Rényi divergence. The relationship between the parameter of Rényi divergence and the performance of LCD of the optimal feature combination is analyzed and experimentally verified. The experiments show that the proposed method improves the performance of LCD significantly and the best performance is achieved with the parameter of Rényi divergence being from 0.75 to 1.
[1] CUMMINS M, NEWMAN P. Probabilistic Appearance Based Navigation and Loop Closing//Proc of the IEEE International Conference on Robotics and Automation. Washington, USA: IEEE, 2007: 2042-2048. [2] ANGELI A, DONCIEUX S, MEYER J A, et al. Real-Time Visual Loop-Closure Detection//Proc of the IEEE International Conference on Robotics and Automation. Washington, USA: IEEE, 2008: 1842-1847. [3] 张国良,姚二亮,汤文俊,等.一种自适应的GraphSLAM鲁棒闭环算法.信息与控制, 2015, 44(3): 316-320, 327. (ZHANG G H, YAO E L, TANG W J, et al. An Adaptive Robust Loop Closure Algorithm for GraphSLAM. Information and Control, 2015, 44(3): 316-320, 327.) [4] 梁志伟,陈燕燕,朱松豪,等.基于视觉词典的单目视觉闭环检测算法.模式识别与人工智能, 2013, 26(6): 561-570. (LIANG Z W, CHEN Y Y, ZHU S H, et al. Loop Closure Detection Algorithm Based on Monocular Vision Using Visual Dictionary. Pattern Recognition and Artificial Intelligence, 2013, 26(6): 561-570.) [5] ENGEL J, SCH PS T, CREMERS D, et al. LSD-SLAM: Large-Scale Direct Monocular SLAM//Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 834-849. [6] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. [7] CUMMINS M, NEWMAN P. FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance. International Journal of Robotics Research, 2008, 27(6): 647-665. [8] MILFORD M J, WYETH G F. SeqSLAM: Visual Route-Based Navi-gation for Sunny Summer Days and Stormy Winter Nights//Proc of the IEEE International Conference on Robotics and Automation. Washington, USA: IEEE, 2012: 1643-1649. [9] LOWE D G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110. [10] VALGREN C, LILIENTHAL A J. SIFT, SURF & Seasons: Appearance-Based Long-Term Localization in Outdoor Environments. Robotics and Autonomous Systems, 2010, 58(2): 149-156. [11] BAY H, ESS A, TUYTELAARS T, et al. Speeded-Up Robust Features(SURF). Computer Vision and Image Understanding, 2008, 110(3): 346-359. [12] 王云峰,翁秀玲,吴 炜,等.基于贪心策略的视觉SLAM闭环检测算法.天津大学学报(自然科学与工程技术版), 2017, 50(12): 1262-1270. (WANG Y F, WENG X L, WU W, et al. Loop Closure Detection Algorithm Based on Greedy Strategy for Visual SLAM. Journal of Tianjin University(Science and Technology), 2017, 50(12):1262-1270.) [13] OLIVA A, TORRALBA A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. International Journal of Computer Vision, 2001, 42(3): 145-175. [14] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An Efficient Alternative to SIFT or SURF//Proc of the IEEE Internatio-nal Conference on Robotics and Automation. Washington, USA: IEEE, 2011: 2564-2571. [15] 刘国忠,胡钊政.基于SURF和ORB全局特征的快速闭环检测.机器人, 2017, 39(1): 36-45. (LIU G Z, HU Z Z. Fast Loop Closure Detection Based on Holistic Features from SURF and ORB. Robot, 2017, 39(1): 36-45.) [16] WANG X L, ZHANG H, PENG G H. A Chordiogram Image Descriptor Using Local Edgels. Journal of Visual Communication and Image Representation, 2017, 49: 129-140. [17] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet Cla-ssification with Deep Convolutional Neural Networks. Communications of the ACM, 2017, 60(6): 84-90. [18] JIA Y Q, SHELHAMER E, DONAHUE J, et al. Caffe: Convolutional Architecture for Fast Feature Embedding//Proc of the 22nd ACM International Conference on Multimedia. New York, USA: ACM, 2014: 675-678. [19] HOU Y, ZHANG H, ZHOU S L. Convolutional Neural Network-Based Image Representation for Visual Loop Closure Detection//Proc of the IEEE International Conference on Information and Automation. Washington, USA: IEEE, 2015: 2238-2245. [20] WANG X L, PENG G H, ZHANG H. Combining Multiple Image Descriptions for Loop Closure Detection. Journal of Intelligent & Robotic Systems, 2017. DOI: 10.1007/s10846-017-0755-7. [21] VAN ERVEN T, HARREMOS P. Rényi Divergence and Kullback-Leibler Divergence. IEEE Transactions on Information Theory, 2014, 60(7): 3797-3820. [22] CAMPOS F M, CORREIA L, CALADO J M F. Robot Visual Localization through Local Feature Fusion: An Evaluation of Multiple Classifiers Combination Approaches. Journal of Intelligent & Robotic Systems, 2015, 77(2): 377-390. [23] T. N. B. Corporation. The Nordlandsbanen Dataset[DB/OL]. [2017-12-15]. http://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-season-by-season. [24] GLOVER A J, MADDERN W P, MILFORD M J, et al. FAB-MAP+RatSLAM: Appearance-Based SLAM for Multiple Times of Day//Proc of the IEEE International Conference on Robotics and Automation. Washington, USA: IEEE, 2010: 3507-3512.