Abstract:The existing temporal knowledge graph representation methods cannot capture the complex relationships within quadruple well. Most of the neural network based models are unable to model time-varying knowledge and capture rich feature information. Moreover, the interaction between entities and relations in these models is poor. Therefore, a multi-scale dilated convolutional neural network model based on attention mechanism(MSDCA) is proposed. Firstly, a time-aware relation representation is obtained using long short-term memory. Secondly, a multi-scale dilated convolutional neural network is employed to improve the interactivity of the quadruple. Finally, a multi-scale attention mechanism is utilized to capture critical features to improve completion ability of MSDCA. Link prediction experiments on multiple public temporal datasets show the superiority of MSDCA.
[1] BOSCHEE E, LAUTENSCHLAGER J, O'BRIEN S, et al. ICEWS Coded Event Data[M/OL]. [2021-01-22]. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/28075. [2] LEETARU K, SCHRODT P A. GDELT: Global Data on Events, Location, and Tone, 1979-2012[C/OL]. [2021-01-22]. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=08494061C6CC8ADB678F4223F56689BB?doi=10.1.1.686.6605&rep=rep1&type=pdf. [3] ERXLEBEN F, GÜNTHER M, KRÖTZSCH M, et al. Introducing Wikidata to the Linked Data Web // Proc of the International Semantic Web Conference. Berlin, Germany: Springer, 2014: 50-65. [4] MAHDISOLTANI F, BIEGA J, SUCHANEK F M. YAGO3: A Knowledge Base from Multilingual Wikipedias[C/OL]. [2021-01-13]. https://suchanek.name/work/publications/cidr2015.pdf. [5] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating Embeddings for Modeling Multi-relational Data // Proc of the 26th International Conference on Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2013, II: 2787-2795. [6] YANG B S, YIH W, HE X D, et al. Learning Multi-relational Semantics Using Neural-Embedding Models[C/OL]. [2021-01-13]. https://arxiv.org/pdf/1411.4072.pdf. [7] KAZEMI S M, POOLE D. SimpLE Embedding for Link Prediction in Knowledge Graphs // Proc of the 32nd International Conference on Neural Information Processing. Berlin, Germany: Springer, 2018: 4289-4300. [8] SUN Z Q, DENG Z H, NIE J Y, et al. Rotate: Knowledge Graph Embedding by Relational Rotation in Complex Space[C/OL]. [2021-01-13]. https://arxiv.org/pdf/1902.10197.pdf. [9] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D Knowledge Graph Embeddings[C/OL]. [2021-01-13]. https://arxiv.org/pdf/1707.01476.pdf. [10] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: Improving Convolution-Based Knowledge Graph Embeddings by Increa-sing Feature Interactions[C/OL]. [2021-01-13]. https://arxiv.org/pdf/1911.00219.pdf. [11] JIANG T S, LIU T Y, GE T, et al. Towards Time-Aware Know-ledge Graph Completion // Proc of the 26th International Confe-rence on Computational Linguistics(Technical Papers). Stroudsburg, USA: ACL, 2016: 1715-1724. [12] DASGUPTA S S, RAY S N, TALUKDAR P. HyTE: Hyperplane-Based Temporally Aware Knowledge Graph Embedding // Proc of the Conference on Empirical Methods in Natural Language Pro-cessing. Stroudsburg, USA: ACL, 2018: 2001-2011. [13] GARCÍA-DURÁN A, DUMANČIĆ S, NIEPERT M. Learning Sequence Encoders for Temporal Knowledge Graph Completion[C/OL]. [2021-01-13]. https://arxiv.org/pdf/1809.03202.pdf. [14] GOEL R, KAZEMIi S M, BRUBAKER M, et al. Diachronic Embedding for Temporal Knowledge Graph Completion[C/OL]. [2021-01-13]. https://arxiv.org/pdf/1907.03143.pdf. [15] XU C J, NAYYERI M, ALKHOURY F, et al. TeRo: A Time-Aware Knowledge Graph Embedding via Temporal Rotation // Proc of the 28th International Conference on Computational Linguistics. Berlin, Germany: Springer, 2020: 1583-1593. [16] LI X, WANG W H, HU X L, et al. Selective Kernel Networks // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 510-519. [17] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. [18] TRIVEDI R, DAI H J, WANG Y C, et al. Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs // Proc of the 34th International Conference on Machine Learning. Sydney, Australia: PMLR Press, 2017: 3462-3471. [19] BORDES A, WESTON J, COLLOBERT R, et al. Learning Structured Embeddings of Knowledge Bases // Proc of the 25th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2011: 301-306.