模式识别与人工智能
2025年4月5日 星期六   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (3): 207-220    DOI: 10.16451/j.cnki.issn1003-6059.202403002
基于图神经网络的推荐系统 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于自监督三重训练和聚合一致邻居的社会化推荐模型
刘树栋1,2, 李丽颖1,2, 陈旭1,2
1.中南财经政法大学 人工智能法商应用研究中心 武汉 430073;
2.中南财经政法大学 信息工程学院 武汉 430073
Social Recommendation Model Based on Self-Supervised Tri-Training and Consistent Neighbor Aggregation
LIU Shudong1,2, LI Liying1,2, CHEN Xu1,2
1. Centre for Artificial Intelligence and Applied Research, Zhongnan University of Economics and Law, Wuhan 430073;
2. School of Information and Engineering, Zhongnan University of Economics and Law, Wuhan 430073

全文: PDF (742 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 将用户社会关系引入用户-商品评分数据中,构建用户-商品异构关系图,可缓解传统推荐系统面临的数据稀疏性和冷启动问题.但是,由于用户间社会关系的复杂性,聚合不一致的社会邻居可能会降低推荐性能.针对上述问题,文中提出基于自监督三重训练和聚合一致邻居的社会化推荐模型(Social Recommendation Based on Self-Supervised Tri-Training and Consistent Neighbor Aggregation, SR-STCNA).首先,在用户-商品评分数据的基础上,引入用户-用户间的社交关系,在用户-商品异构图中构建多种关系.使用超图表示用户和用户、用户和商品之间的关系.使用自监督三重训练,从未标记的数据中学习用户表示,充分挖掘用户-用户和用户-商品间存在的复杂连接关系.然后,通过用户-商品异构图上的节点一致性得分和关系自注意力,在用户和商品表示学习过程中聚合一致邻居,增强用户和商品嵌入表示能力,提高推荐性能.在CiaoDVD、FilmTrust、Last.fm、Yelp数据集上的实验表明,SR-STCNA性能较优.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘树栋
李丽颖
陈旭
关键词 社会化推荐协同过滤数据稀疏性超图一致邻居    
Abstract:Integrating user social relationships into user-item rating data to construct a heterogeneous user-item graph can alleviate data sparsity and cold start in traditional recommender systems. However, due to the complexity of user social relationships, aggregating inconsistent neighbors may degrade the recommendation performance. To address this issue, a social recommendation model based on self-supervised tri-training and consistent neighbor aggregation(SR-STCNA) is proposed. Firstly, on the basis of user-item rating data, social relationships among users are introduced and diverse relations within the heterogeneous user-item graph are established. The relationships between users as well as between users and items are presented by a hypergraph. Self-supervised tri-training is employed to learn users' representations from unlabeled data and uncover the complex connectivity between user-user and user-item interactions. Then, the consistent neighbors of users and items are aggregated in the process of their representation learning by the node consistency score and relationship self-attention on the user-item heterogeneous graph. Consequently, the representation ability of users and items is enhanced, thereby improving the recommendation performance. Finally, the experimental results on CiaoDVD, FilmTrust, Last.fm and Yelp datasets validate the superiority of SR-STCNA.
Key wordsSocial Recommendation    Collaborative Filtering    Data Sparsity    Hypergraph    Consistent Neighbor   
收稿日期: 2023-12-14     
ZTFLH: TP 391  
基金资助:国家自然科学基金项目(No.61602518,72374219)、国家社会科学基金一般项目(No.21BXW076)、高等学校学科创新引智基地项目(No.B21038)资助
通讯作者: 刘树栋,博士,副教授,主要研究方向为智能检索与推荐.E-mail:liushudong@zuel.edu.cn.   
作者简介: 李丽颖,硕士研究生,主要研究方向为数据挖掘、推荐系统.E-mail:1246926983@qq.com. 陈 旭,博士,讲师,主要研究方向为机器学习、自然语言处理.E-mail:chenxu@whu.edu.cn.
引用本文:   
刘树栋, 李丽颖, 陈旭. 基于自监督三重训练和聚合一致邻居的社会化推荐模型[J]. 模式识别与人工智能, 2024, 37(3): 207-220. LIU Shudong, LI Liying, CHEN Xu. Social Recommendation Model Based on Self-Supervised Tri-Training and Consistent Neighbor Aggregation. Pattern Recognition and Artificial Intelligence, 2024, 37(3): 207-220.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202403002      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I3/207
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn