Research on Chaos Particle Swarm Optimization Algorithm
GAO Shang1,2, YANG JingYu2
1.School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003 2.Department of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094
Abstract:By use of the properties-ergodicity, randomicity, and regularity of chaos, a chaos particle swarm optimization(CPSO) algorithm is proposed to solve the optimization problems. The basic principle of CPSO algorithm is that chaos initialization is adopted to improve individual quality and chaos perturbation is utilized to avoid the search being trapped in local optimum. Simulation results of typical complex function optimization show that chaos particle swarm optimization is a relatively simple and effective algorithm.
[1] Eberhart R C, Kennedy J. A New Optimizer Using Particles Swarm Theory. In: Proc of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995, 30-43 [2] Shi Y H, Eberhart R C. A Modified Particle Swarm Optimizer. In: Proc of the IEEE International Conference on Evolutionary Computation. Anchorage, USA, 1998, 69-73 [3] Li A G, Qin Z, Bao F M, et al. Particle Swarm Optimization Algorithms. Computer Engineering and Applications, 2002, 38(21): 1-3,17 (in Chinese) (李爱国,覃 征,鲍复民,等.粒子群优化算法.计算机工程与应用, 2002, 38(21): 1-3,17) [4] Ke J, Qian J X, Qiao Y Z. A Modified Particle Swarm Optimization Algorithm. Journal of Circuits Systems, 2003, 8(5): 87-91 (in Chinese) (柯 晶,钱积新,乔谊正.一种改进粒子群优化算法.电路与系统学报, 2003, 8(5): 87-91) [5] Lü Z S, Hou Z R. Particle Swarm Optimization with Adaptive Mutation. Acta Electronica Sinica, 2004, 32(3): 416-420 (in Chinese) (吕振肃,候志荣.自适应变异的粒子群优化算法.电子学报, 2004, 32(3): 416-420) [6] Yang W, Li Q Q. Survey on Particle Swarm Optimization Algorithm. Engineering Science, 2004, 6(5): 87-94 (in Chinese) (杨 维,李歧强.粒子群优化算法综述.中国工程科学, 2004, 6(5): 87-94) [7] Xie X F, Zhang W J, Yang Z L. Overview of Particle Swarm Optimization. Control and Decision, 2003, 18(2): 129-134 (in Chinese) (谢晓锋,张文俊,杨之廉.微粒群算法综述.控制与决策, 2003, 18(2): 129-134) [8] Gao Y, Xie S L. Particle Swarm Optimization Algorithms with Immunity. Computer Engineering and Applications, 2004, 40(6): 4-6,33 (in Chinese) (高 鹰,谢胜利.免疫粒子群优化算法.计算机工程与应用, 2004, 40(6): 4-6,33) [9] Li B Y, Xiao Y S, Wang L. A Hybrid Particle Swarm Optimization Algorithm for Solving Complex Functions with High Dimensions. Information and Control, 2004, 33(1): 27-30 (in Chinese) (李炳宇,萧蕴诗,汪 镭.一种求解高维复杂函数优化问题的混合粒子群优化算法.信息与控制, 2004, 33(1): 27-30) [10] Gao S, Yang J Y, Wu X J. Using Particle Swarm Optimization Algorithm with Crossover to Solve Assignment Problem. Computer Engineering and Applications, 2004, 40(8): 54-55 (in Chinese) (高 尚,杨静宇,吴小俊.求解指派问题的交叉粒子群优化算法. 计算机工程与应用, 2004, 40(8): 54-55) [11] Huang L, Wang K P, Zhou C G, et al. Particle Swarm Optimization for Traveling Salesman Problems. Journal of Jilin University (Science Edition), 2003, 41(10): 477-480 (in Chinese) (黄 岚,王康平,周春光,等.粒子群优化算法求解旅行商问题.吉林大学学报(理学版), 2003, 41(10): 477-480) [12] Qin Y Q, Sun D B, Li N, et al. Path Planning for Mobile Robot Based on Particle Swarm Optimization. Robot, 2004, 26(3): 222-225 (in Chinese) (秦元庆,孙德宝,李 宁,等.基于粒子群算法的移动机器人路径规划.机器人, 2004, 26(3): 222-225) [13] Dong Y, Tang J F, Xu B D, et al. Application of Particle Swarm Optimization to Nonlinear Constrained Programming. Journal of Northeastern University (Natural Science), 2003, 24(12): 1141-1144 (in Chinese) (董 颖,唐加福,许宝栋,等.一种求解非线性规划问题的混合粒子群优化算法.东北大学学报(自然科学版), 2003, 24(12): 1141-1144) [14] Li B, Jiang W S. Chaos Optimization Method and Its Application. Control Theory and Applications, 1997, 14(4): 613-615 (in Chinese) (李 兵,蒋慰孙.混沌优化方法及其应用.控制理论与应用, 1997, 14(4): 613-615) [15] Zhang G P, Wang Z O, Yuan G L. A Chaotic Search Method for a Class of Combinatorial Optimization Problems. Systems Engineering-Theory and Practice, 2001, 21(5): 102-105 (in Chinese) (张国平,王正欧,袁国林.求解一类组合优化问题的混沌搜索法.系统工程理论与实践, 2001, 21(5): 102-105) [16] Tang W, Guo Z M, Tang J H, et al. Optimizing Complex Functions by Chaos Genetic Algorithm. Journal of Harbin Engineering University, 2000, 21(5): 1-5 (in Chinese) (唐 巍,郭镇明,唐嘉亨,等.复杂函数优化的混沌遗传算法.哈尔滨工程大学学报, 2000, 21(5): 1-5) [17] Yao J F, Mei C, Peng X Q, et al. A New Optimization Approach-Chaos Genetic Algorithm. Systems Engineering, 2001, 19(1): 70-74 (in Chinese) (姚俊峰,梅 炽,彭小奇,等.混沌遗传算法及其应用.系统工程, 2001, 19(1): 70-74) [18] Wang Z C, Zhang T, Wang H W. Simulated Annealing Algorithm Based on Chaotic Variable. Control and Decision, 1999, 14(4): 381-384 (in Chinese) (王子才,张 彤,王宏伟.基于混沌变量的模拟退火优化方法.控制与决策, 1999, 14(4): 381-384) [19] Wang L. Intelligent Optimization Algorithms with Applications. Beijing, China: Tsinghua University Press, 2001, 2-7 (in Chinese) (王 凌.智能优化算法及其应用. 北京:清华大学出版社, 2001, 2-7) [20] Yang R L,Gu J F. An Efficient Simulated Annealing Algorithm for Global Optimization. Systems Engineering-Theory and Practice, 1997, 17(5): 29-35 (in Chinese) (杨若黎,顾基发.一种高效的模拟退火全局优化算法.系统工程理论与实践, 1997, 17(5): 29-35)