|
|
总间隔v-支持向量机及其几何问题* |
彭新俊1,2,王翼飞3 |
1.上海师范大学 计算数学系 上海 200234 2.上海师范大学 数理信息学院 上海高校“科学计算”重点实验室 上海 200234 3.上海大学 数学系 上海 200444 |
|
Total Margin v-Support Vector Machine and Its Geometric Problem |
PENG Xin-Jun1,2, WANG Yi-Fei3 |
1.Department of Computational Mathematics, Shanghai Normal University, Shanghai 200234 2.Scientific Computing Key Laboratory of Shanghai Universities, College of Mathematics and Science,Shanghai Normal University, Shanghai 200234 3.Department of Mathematics, Shanghai University, Shanghai 200444 |
[1] Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995 [2] Vapnik V N. Statistical Learning Theory. New York, USA: Wiley, 1998 [3] Christianini V, Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge, UK: Cambridge University Press, 2002 [4] Ripley B D. Pattern Recognition and Neural Networks. Cambridge, UK: Cambridge University Press, 1996 [5] Jeng J T, Chuang C C, Su S F. Support Vector Interval Regression Networks for Interval Regression Analysis. Fuzzy Sets and Systems, 2003, 138(2): 283-300 [6] Vapnik V N, Chapelle O. Bounds on Error Expectation for Support Vector Machines. Neural Computation, 2000, 12(9): 2013-2036 [7] Chapelle O, Vapnik V N, Bousquet O, et al. Choosing Multiple Parameters for Support Vector Machines. Machine Learning, 2002, 46(1/2/3): 131-159 [8] Schlkopf B, Smola A J, Williamson R C, et al. New Support Vector Machines. Neural Computation, 2000, 12(6): 1207-1245 [9] Yoon M, Yun Y, Nakayama H. A Role of Total Margin in Support Vector Machines // Proc of the International Joint Conference on Neural Network. Portland, USA, 2003, Ⅲ: 2049-2053 [10] Crisp D J, Burges C J C. A Geometric Interpretation of Nu-SVM Classifiers // Solla S A, Leen T K, Müller K R, eds. Advances in Neural Information. Cambridge, USA: MIT Press, 1999, 12: 244-250 [11] Mavroforakis M E, Theodoridis S. A Geometric Approach to Support Vector Machine (SVM) Classification. IEEE Trans on Neural Network, 2007, 17(3): 671-682 [12] Tao Qing, Sun Demin, Fan Jingsong, et al. Maximal Margin Linear Classifier Based on the Contraction of the Closed Convex Hull. Journal of Software, 2002, 13(3): 404-409 (in Chinese) (陶 卿,孙德敏,范劲松,等.基于闭凸包收缩的最大边缘线性分类器.软件学报, 2002, 13(3): 404-409) |
[1] |
徐海龙,龙光正,别晓峰,吴天爱,郭蓬松. 结合Tri-training半监督学习和凸壳向量的SVM主动学习算法*[J]. 模式识别与人工智能, 2016, 29(1): 39-46. |
[2] |
田萌,王文剑. 基于正交多项式的核函数性质研究*[J]. 模式识别与人工智能, 2014, 27(5): 385-393. |
[3] |
孟明,罗志增. 基于眼动辅助脑电信号的手部动作分类方法[J]. 模式识别与人工智能, 2012, 25(6): 1007-1012. |
[4] |
陈亦望,张品,傅强. 基于微多普勒信号三维形状特征的人体目标动作分类方法[J]. 模式识别与人工智能, 2012, 25(1): 16-22. |
[5] |
麻文华,黄磊,刘昌平. 基于置信度分析的人群密度等级分类模型[J]. 模式识别与人工智能, 2011, 24(1): 30-39. |
[6] |
申丰山,张军英,王开军. 使用模拟切削算法的SVM增量学习机制[J]. 模式识别与人工智能, 2010, 23(4): 491-500. |
[7] |
王晓明,王士同. 最小类方差支持向量机与零空间分类器的集成[J]. 模式识别与人工智能, 2010, 23(4): 441-449. |
[8] |
孙鹤立,冯博琴,黄健斌,赵英良,刘均. 序关系优化的多超平面排序学习模型[J]. 模式识别与人工智能, 2010, 23(3): 327-334. |
[9] |
唐耀华,郭为民,高静怀. 基于核相似性差异最大化的支持向量机参数选择算法[J]. 模式识别与人工智能, 2010, 23(2): 210-215. |
[10] |
吴德辉,李辉,刘青松,戴蓓蒨. 基于因子分析信道失配补偿的SVM话者确认方法[J]. 模式识别与人工智能, 2010, 23(1): 59-64. |
[11] |
刘佳,陈纯,叶承羲,李娜,卜佳俊. 基于协方差描述子和黎曼流形的语音情感识别*[J]. 模式识别与人工智能, 2009, 22(5): 673-677. |
[12] |
张大海,汪增福. 用于在线签名认证的特征提取和个性化特征选择方法[J]. 模式识别与人工智能, 2009, 22(4): 619-623. |
[13] |
业巧林,业宁,张训华. 基于极分解下的混合核函数及改进*[J]. 模式识别与人工智能, 2009, 22(3): 366-373. |
[14] |
陶卿,那健,冯勇,刘欣. 支持向量机弹道识别方法的精度分析*[J]. 模式识别与人工智能, 2009, 22(3): 494-498. |
[15] |
孟凡满,彭宏,裴峥,王军. 一种基于支持向量机和遗传算法的自适应图像水印方法*[J]. 模式识别与人工智能, 2009, 22(2): 312-317. |
|
|
|
|