模式识别与人工智能
2025年4月6日 星期日   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2011, Vol. 24 Issue (3): 332-339    DOI:
论文 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于六度分离理论的机会发现场景构造方法
An Approach to Construction of Scenario Map in Chance Discovery Based on Six Degrees of Separation Theory

全文: PDF (476 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 场景构造是机会发现过程中的关键活动之一.文中基于六度分离理论对事件的相关矩阵进行了p阶扩展,在对机会发现场景的结构进行形式化描述的基础上,提出机会发现活动中基于事件的p阶扩展相关矩阵,采用聚类分析的方法进行机会发现场景中事件簇构造,进而实现机会发现场景构造的思想与方法.对机会发现场景构造方法性能的评估进行探讨,明确了以效率系数作为机会发现场景构造方法的评估标准.实验表明,基于相关矩阵的机会发现场景构造具有较高的精度和效率系数,而基于3阶扩展矩阵的机会发现场景构造更适合在线机会发现的情形.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张振亚
程红梅
张曙光
关键词 机会发现场景聚类分析相关矩阵    
Abstract:The constructing of scenario map is one of the key activities in the process of chance discovery. The event correlation matrix is extended according to six degrees of separation theory and the formalization description of the structure of scenario map in chance discovery is presented. The principle for the construction of event clusters in scenario map via clustering analysis based on p order correlation matrix and the construction of scenario map based on event clusters are given. The algorithm for the implementation of the principle is given as well. The evaluating criterion for the performance of the proposed methods is discussed and the efficiency coefficient is used as the criterion definitely. Experimental results show that the clustering precision and the efficiency coefficient of scenario map constructed based on correlation matrix are high and the construction of scenario map based on 3order correlation matrix is fine for online chance discovery.
Key wordsChance Discovery    Scenario Map    Cluster Analysis    Correlation Matrix   
    
ZTFLH: TP 301  
引用本文:   
张振亚, 程红梅, 张曙光. 基于六度分离理论的机会发现场景构造方法[J]. 模式识别与人工智能, 2011, 24(3): 332-339. ZHANG Zhen-Ya, CHENG Hong-Mei, ZHANG Shu-Guang. An Approach to Construction of Scenario Map in Chance Discovery Based on Six Degrees of Separation Theory. , 2011, 24(3): 332-339.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2011/V24/I3/332
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn