模式识别与人工智能
2025年4月2日 星期三   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2013, Vol. 26 Issue (3): 247-253    DOI:
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于序列输入的量子神经网络模型及算法
李盼池,施光尧
东北石油大学计算机与信息技术学院大庆163318
Sequence-Input Based Quantum Neural Networks Model and Its Algorithm
LI Pan-Chi,SHI Guang-Yao
School of Computer Information Technology,Northeast Petroleum University,Daqing 163318

全文: PDF (643 KB)   HTML (0 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为提高神经网络的逼近能力,提出一种各维输入为离散序列的量子神经网络模型及算法.该模型为3层结构,隐层为量子神经元,输出层为普通神经元.量子神经元由量子旋转门和多位受控非门组成,利用多位受控非门中目标量子位的输出向输入端的反馈,实现对输入序列的整体记忆,利用受控非门输出中多位量子比特的纠缠获得量子神经元的输出.基于量子计算理论设计该模型的学习算法.该模型可从宽度和深度两方面获取输入序列的特征.仿真结果表明,当输入节点数和序列长度满足一定关系时,该模型明显优于普通神经网络.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李盼池
施光尧
关键词 量子计算量子旋转门多位受控非门量子神经元量子神经网络    
Abstract:To enhance the approximation capability of neural networks,a quantum neural networks model is proposed whose input of each dimension is in discrete sequence. This model includes three layers,in which the hidden layer consists of quantum neurons,and the output layer consists of common neurons. The quantum neuron consists of the quantum rotation gates and the multi-qubits controlled-not gates. By using the information feedback of target qubit from output to input in multi-qubits controlled-not gate,the overall memory of input sequences is realized. The output of quantum neuron is obtained from the entanglements of multi-qubits in controlled-not gates. The learning algorithm is designed in detail according to the basis principles of quantum computation. The characteristics of input sequence can be effectively obtained from the width and the depth. The simulation results show that,when the input nodes and the length of the sequence satisfy a certain relations,the proposed model is superior to the common artificial neural networks.
Key wordsQuantum Computation    Quantum Rotation Gate    Multi-Qubits Controlled-Not Gate    Quantum Neuron    Quantum Neural Networks   
收稿日期: 2012-05-16     
ZTFLH: TP181  
基金资助:国家自然科学基金资助项目(No.6110132)
作者简介: 李盼池(通讯作者),男,1969年生,教授,博士后,主要研究方向为量子智能计算.E-mail:lipanchi@vip.sina.com.施光尧,男,1989年生,硕士研究生,主要研究方向为量子神经网络.
引用本文:   
李盼池,施光尧. 基于序列输入的量子神经网络模型及算法[J]. 模式识别与人工智能, 2013, 26(3): 247-253. LI Pan-Chi,SHI Guang-Yao. Sequence-Input Based Quantum Neural Networks Model and Its Algorithm. , 2013, 26(3): 247-253.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2013/V26/I3/247
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn