Abstract:Due to the ever-increasing amount of digital contents in the internet, the traditional information retrieval technology is unable to meet the demands for high precision information of different users. In this paper, a personalized query expansion method based on multiple semantic relationships is proposed. It is used for personalized search based on social tagging systems. An tag-topic model is utilized to generate the user interesting model. Therefore, more precise semantics can be captured. The performance of the search can also be improved. Based on the user model, a personalized search method based on multiple semantic relationships from social data is further presented to select suitable expansion terms. Experiments conducted on a large social tagging dataset show that the proposed method outperforms several non-personalized methods as well as the existing personalized search methods based on social tagging systems.
[1] 李树青.个性化信息检索技术综述.情报理论与实践, 2009, 32(5): 107-113. (LI S Q. Personalized Information Retrieval Review. Information Studies: Theory and Application, 2009, 32(5): 107-113.) [2] GHORAB M R, ZHOU D, O′CONNOR A, et al. Personalised Information Retrieval: Survey and Classification. User Modeling and User-Adapted Interaction, 2013, 23(4): 381-443. [3] SHEN X H, TAN B, ZHAI C X. Implicit User Modeling for Perso-nalized Search // Proc of the 14th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2005: 824-831. [4] CHIRITA P A, FIRAN C S, NEJDL W. Personalized Query Expansion for the Web // Proc of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2007: 7-14. [5] AGICHTEIN E, BRILL E, DUMAIS S. Improving Web Search Ranking by Incorporating User Behavior Information // Proc of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2006: 19-26. [6] XU S L, BAO S H, FEI B, et al. Exploring Folksonomy for Personalized Search // Proc of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2008: 155-162. [7] BOUADJENEK M R, HACID H, BOUZEGHOUB M, et al. Using Social Annotations to Enhance Document Representation for Perso-nalized Search // Proc of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2013: 1049-1052. [8] XIE H R, LI X D, WANG T, et al. Personalized Search for Social Media via Dominating Verbal Context. Neurocomputing, 2016, 172: 27-37. [9] DOU Z C, SONG R H, WEN J R. A Large-Scale Evaluation and Analysis of Personalized Search Strategies // Proc of the 16th International Conference on World Wide Web. New York, USA: ACM, 2007: 581-590. [10] BIANCALANA C, MICARELLI A. Social Tagging in Query Expansion: A New Way for Personalized Web Search // Proc of the International Conference on Computational Science and Enginee-ring. Washington, USA: IEEE, 2009, IV: 1060-1065. [11] 张志强,孟庆海,谢晓芹.个性化的社会标签查询扩展技术研究.计算机科学与探索, 2010, 4(9): 812-829. (ZHANG Z Q, MENG Q H, XIE X Q. Research on Personalized Social Tag Query Expansion Techniques. Journal of Frontiers of Computer Science and Technology, 2010, 4(9): 812-829.) [12] ZHOU D, LAWLESS S, WADE V. Improving Search via Persona-lized Query Expansion Using Social Media. Information Retrieval, 2012, 15(3/4): 218-242. [13] BOUADJENEK M R, HACID H, BOUZEGHOUB M. SoPRa: A New Social Personalized Ranking Function for Improving Web Search // Proc of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2013: 861-864. [14] 李 鹏,王 斌,晋 薇.一种基于社会化标签的信息检索方法.中文信息学报, 2013, 27(1): 39-46. (LI P, WANG B, JIN W. An Information Retrieval Method Based on Social Annotations. Journal of Chinese Information Processing, 2013, 27(1): 39-46.) [15] WANG Q H, JIN H X. Exploring Online Social Activities for Adaptive Search Personalization // Proc of the 19th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2010: 999-1008. [16] CAI Y, LI Q. Personalized Search by Tag-Based User Profile and Resource Profile in Collaborative Tagging Systems // Proc of the 19th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2010: 969-978. [17] XIE H R, LI X D, WANG T, et al. Incorporating Sentiment into Tag-Based User Profiles and Resource Profiles for Personalized Search in Folksonomy. Information Processing & Management, 2016, 52(1): 61-72. [18] BENDER M, CRECELIUS T, KACIMI M, et al. Exploiting Social Relations for Query Expansion and Result Ranking // Proc of the 24th IEEE International Conference on Data Engineering Workshop. Washington, USA: IEEE, 2008: 501-506. [19] BERTIER M, GUERRAOUI R, LEROY V, et al. Toward Perso-nalized Query Expansion // Proc of the 2nd ACM EuroSys Workshop on Social Network Systems. New York, USA: ACM, 2009: 7-12. [20] 冯 勇,刘 瑶,徐红艳.一种基于标签用户模型的个性化信息检索方法.小型微型计算机系统, 2014, 35(9): 2004-2008. (FENG Y, LIU Y, XU H Y. Personalized Information Retrieval Method Based on Tag User Model. Journal of Chinese Computer Systems, 2014, 35(9): 2004-2008.) [21] BIANCALANA C, GASPARETTI F, MICARELLI A, et al. Social Semantic Query Expansion. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 1-43. [22] ZHOU D, LAWLESS S, WADE V. Web Search Personalization Using Social Data // Proc of the 2nd International Conference on Theory and Practice of Digital Libraries. Berlin, Heidelberg: Springer, 2012: 298-310. [23] YANG L P, JI D H, ZHOU G D, et al. Document Re-ranking Using Cluster Validation and Label Propagation // Proc of the 15th ACM International Conference on Information and Knowledge Ma-nagement. New York, USA: ACM, 2006: 690-697. [24] ZUBIAGA A, GARCIA-PLAZA A P, FRESNO V, et al. Content-Based Clustering for Tag Cloud Visualization // Proc of the International Conference on Advances in Social Network Analysis and Mi-ning. New York, USA: ACM, 2009: 316-319. [25] ZUBIAGA A, FRESNO V, MARTINEZ R, et al. Harnessing Folksonomies to Produce a Social Classification of Resources. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(8): 1801-1813. [26] ROBERTSON S, ZARAGOZA H. The Probabilistic Relevance Framework: BM25 and Beyond. Foundations and Trends in Information Retrieval, 2009, 3(4): 333-389. [27] AMATI G, VAN RIJSBERGEN C J. Probabilistic Models of Information Retrieval Based on Measuring the Divergence from Randomness. ACM Transactions on Information Systems(TOIS), 2002, 20(4): 357-389.