Abstract:The performance of pseudo-relevance feedback technique is heavily dependent on two parameter values. Under the lack of relevance valuation results, these parameters can only rely on experience to set. In this paper, a pseudo-relevance feedback technique based on matrix factorization is proposed. This technique fuses multiple pseudo-relevance feedback results using the ideas of collaborative filtering together. And the optimal parameters are automatically selected for query expansion. Experimental results show that compared with the existing pseudo-relevance feedback techniques, the proposed method has a better retrieval performance, regardless of any underlying information retrieval model.
[1] Bhatnagar P, Pareek N. Improving Pseudo-Relevance Feedback Based Query Expansion Using Genetic Fuzzy Approach and Semantic Similarity Notion. Journal of Information Science, 2014, 40(4): 523-537 [2] Wu D, He D Q, Wang H L. A Relevance Feedback Based Query Translation Enhancement Technique in Cross Language Information Retrieval. Journal of the China Society for Scientific and Technical Information, 2012, 31(4): 398-406 (in Chinese) (吴 丹,何大庆,王惠临.一种基于相关反馈的跨语言信息检索查询翻译优化技术研究.情报学报, 2012, 31(4): 398-406) [3] Huang M X, Yan X W, Zhang S C. Query Expansion of Pseudo Relevance Feedback Based on Matrix-Weighted Association Rules Mining. Journal of Software, 2009, 20(7): 1854-1865 (in Chinese) (黄名选,严小卫,张师超.基于矩阵加权关联规则挖掘的伪相关反馈查询扩展.软件学报, 2009, 20(7): 1854-1865) [4] Manning C D, Raghavan P, Schütze H. Introduction to Information Retrieval. Cambridge, UK: Cambridge University Press, 2008 [5] Harter S P. Online Information Retrieval: Concepts, Principles, and Techniques. Salt Lake City, USA: Academic Press, 1986 [6] Bhogal J, Macfarlane A, Smith P. A Review of Ontology Based Query Expansion. Information Processing & Management, 2007, 43(4): 866-886 [7] Lee C J, Croft W B. Cross-Language Pseudo-Relevance Feedback Techniques for Informal Text // Proc of the 36th European Confe-rence on Information Retrieval. Amsterdam, The Netherlands, 2014: 260-272 [8] Jiang L, Mitamura T, Yu S I, et al. Zero-Example Event Search Using Multi-modal Pseudo Relevance Feedback // Proc of the International Conference on Multimedia Retrieval. Glasgow, UK, 2014: 297-304 [9] Wang X W, Wang X J, Sun Y P. Cross-Lingual Pseudo Relevance Feedback Based on Bilingual Topics. Journal of Beijing University of Posts and Telecommunications, 2013, 36(4): 81-84 (in Chinese) (王序文,王小捷,孙月萍.双语主题跨语言伪相关反馈.北京邮电大学学报, 2013, 36(4): 81-84) [10] Cronen-Townsend S, Zhou Y, Croft W B. A Framework for Selective Query Expansion // Proc of the 13th ACM International Conference on Information and Knowledge Management. Washington, USA, 2004: 236-237 [11] Cronen-Townsend S, Zhou Y, Croft W B. Predicting Query Performance // Proc of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Tampere, Finland, 2002: 299-306 [12] Zhou D, Lawless S, Wade V. Improving Search via Personalized Query Expansion Using Social Media. Information Retrieval, 2012, 15(3/4): 218-242 [13] He B, Ounis I. Studying Query Expansion Effectiveness // Proc of the 31st European Conference on Information Retrieval Research. Toulouse, France, 2009: 611-619 [14] Billerbeck B, Zobel J. Document Expansion versus Query Expansion for Ad-hoc Retrieval // Proc of the 10th Australasian Document Computing Symposium. Sydney, Australia, 2005: 34-41 [15] Zhang F Z, Liu S, Li Z H, et al. Collaborative Filtering Recommendation Algorithm Incorporating User's Reviews and Contextual Information. Journal of Chinese Computer Systems, 2014, 35(2): 228-232 (in Chinese) (张付志,刘 赛,李忠华,等.融合用户评论和环境信息的协同过滤推荐算法.小型微型计算机系统, 2014, 35(2): 228-232) [16] Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms // Proc of the 10th International Conference on World Wide Web. Hong Kong, China, 2001: 285-295 [17] Cacheda F, Carneiro V, Fernández D L, et al. Comparison of Co-llaborative Filtering Algorithms: Limitations of Current Techniques and Proposals for Scalable, High-Performance Recommender Systems. ACM Trans on the Web, 2011, 5(1): 1-33 [18] Sun D T, He T, Zhang F H. Survey of Cold-Start Problem in Co-llaborative Filtering Recommender System. Computer and Modernization, 2012, (5): 59-63 (in Chinese) (孙冬婷,何 涛,张福海.推荐系统中的冷启动问题研究综述.计算机与现代化, 2012, (5): 59-63) [19] Yang Y, Xiang Y, Xiong L. Collaborative Filtering and Recommendation Algorithm Based on Matrix Factorization and User Nearest Neighbor Model. Journal of Computer Applications, 2012, 32(2): 395-398 (in Chinese) (杨 阳,向 阳,熊 磊.基于矩阵分解与用户近邻模型的协同过滤推荐算法.计算机应用, 2012, 32(2): 395-398) [20] Ma H. An Experimental Study on Implicit Social Recommendation // Proc of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. Dublin, Ireland, 2013: 73-82 [21] Savoy J. Comparative Study of Monolingual and Multilingual Search Models for Use with Asian Languages. ACM Trans on Asian Language Information Processing, 2005, 4(2): 163-189 [22] Egozi O, Markovitch S, Gabrilovich E. Concept-Based Information Retrieval Using Explicit Semantic Analysis. ACM Trans on Information Systems, 2011, 29(2): 1-38