[1] STOKES G G. On the Composition and Resolution of Streams of Polarized Light from Different Sources. Transactions of the Cambridge Philosophical Society, 1851, 9: 399-416.
[2] YANG J, CONG S, LIU X, et al. Effective Quantum State Reconstruction Using Compressed Sensing in NMR Quantum Computing. Physical Review A, 2017, 96. DOI: 10.1103/PhysRevA.96.052101.
[3] BAGHSHAHI H R, TAVASSOLY M K, BEHJAT A. Entropy Squee-zing and Atomic Inversion in the K-photon Jaynes-Cummings Model in the Presence of the Stark Shift and a Kerr Medium: A Full Nonlinear Approach. Chinese Physics B, 2014, 23(7). DOI: 10.1088/1674-1056/23/7/074203.
[4] LEONHARDT U. Quantum-State Tomography and Discrete Wigner Function. Physical Review Letters, 1995, 74(21): 4101-4105.
[5] 丛 爽,张娇娇.压缩传感理论、优化算法及其在系统状态重构中应用.信息与控制, 2017, 46(3): 267-274.
(CONG S, ZHANG J J. Compressed Sensing Theory, Optimization Algorithm and Application in System State Reconstruction. Information and Control, 2017, 46(3): 267-274.)
[6] 丛 爽, 张 慧, 李克之.基于压缩传感的量子状态估计算法的性能对比分析.模式识别与人工智能, 2016, 29(2): 116-121.
(CONG S, ZHANG H, LI K Z. Comparative Analysis of Quantum State Estimation Algorithm Based on Compressive Sensing. Pattern Recognition and Artificial Intelligence, 2016, 29(2): 116-121.)
[7] SMITH A, RIOFRIO C A, ANDERSON B E, et al. Quantum State Tomography by Continuous Measurement and Compressed Sensing. Physical Review A, 2015, 87(3): 184-191.
[8] ZHANG J J, LI K Z, CONG S, et al. Efficient Reconstruction of Density Matrices for High Dimensional Quantum State Tomography. Signal Processing, 2017, 139: 136-142.
[9] SMOLIN J A, GAMBETTA J M, SMITH G. Efficient Method for Computing the Maximum-Likelihood Quantum State from Measurements with Additive Gaussian Noise. Physical Review Letters, 2012, 108(7). DOI: 10.1103/PhysRevLett.108.070502.
[10] RIOFR O C A, GROSS D, FLAMMIA S T, et al. Experimental Quantum Compressed Sensing for a Seven-Qubit System. Nature Communications, 2017, 8. DOI: 10.1038/ncomms15305.
[11] BOYD S, PARIKH N, CHU E, et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122.
[12] LI K Z, CONG S. A Robust Compressive Quantum State Tomography Algorithm Using ADMM. IFAC Proceedings Volumes, 2014, 47(3): 6878-6883.
[13] ZHENG K, LI K Z, CONG S. A Reconstruction Algorithm for Compressive Quantum Tomography Using Various Measurement Sets. Scientific Reports, 2016, 6. DOI: 10.1038/srep38497.
[14] DENG W, LAI M J, PENG Z M, et al. Parallel Multi-block ADMM with O(1/k) Convergence. Journal of Scientific Computing, 2017, 71(2): 712-736.
[15] 张娇娇.基于压缩感知的量子状态估计与滤波算法及其收敛性研究.硕士学位论文.合肥:中国科学技术大学, 2018.(ZHANG J J. Optimization Algorithm and Its Convergence of Quantum State Estimation and Filtering via Compressed Sensing. Master Dissertation. Hefei, China: University of Science and Technology of China, 2018.)
[16] YANG J F, YUAN X M. Linearized Augmented Lagrangian and Alternating Direction Methods for Nuclear Norm Minimization. Mathematics of Computation, 2012, 82(281): 301-329. |