模式识别与人工智能
2025年4月7日 星期一   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2015, Vol. 28 Issue (9): 769-780    DOI: 10.16451/j.cnki.issn1003-6059.201509001
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于命题逻辑概率赋值的近似推理模式*
张家录1,陈雪刚2,吴霞1
1.湘南学院 数学与金融学院 郴州 423000
2.湘南学院 软件与通信工程学院 郴州 423000
Approximate Reasoning Model Based on Probability Valuation of Propositional Logic
ZHANG Jia-Lu1, CHEN Xue-Gang2, WU Xia1
1.School of Mathematics and Finance, Xiangnan University, Chenzhou 423000
2.School of Software and Communication Engineering, Xiangnan University, Chenzhou 423000

全文: PDF (424 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 将命题逻辑的赋值域由二值{0,1}推广到给定的概率空间,引进命题公式的概率赋值,概率赋值是经典命题逻辑赋值及各种真度概念的推广.利用概率赋值引入命题公式的概率真度、不可靠度、基于独立事件赋值集的概率真度等概念,通过讨论概率真度的性质,表明概率真度在全体命题公式集F(S)上满足Kolmogorov公理.证明全部命题公式基于独立事件赋值集的真度之集在[0,1]中无孤立点,以及在命题逻辑形式推演中,一个有效推理结论的不可靠度不超过各前提的不可靠度与其必要度的乘积之和等结论.在概率赋值的基础上,引进命题公式集的a.e.结论、依概率结论、依概率真度结论等概念,讨论这些概念之间的联系,并提出两个不同类型的近似推理模式.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张家录
陈雪刚
吴霞
关键词 概率逻辑概率赋值概率真度不可靠度近似推理    
Abstract:The value domain of proposition logic is extended from two values {0,1} to a probability space, and hence the concept of probability valuation of propositional formulas is introduced. Probability valuation is a generalization of classical propositional valuation and various truth degrees. Based on probability valuation, the concepts of probability truth degree, uncertainty degree, probability truth degree based on the set of all probability valuation of formulas on independent events are introduced. Grounded on the discussion of the properties of probability truth degree, probability truth degree satisfies Kolmogorov axioms on the entire set of propositional formulas. It is proved that the set of probability truth degrees of all formulas based on the set of all probability valuation on independent events has no isolated points in [0,1]. In the form of deduction in propositional logic, the uncertainty degree of conclusion is less than or equal to the sum of the product of uncertainty degree of each premise and its essentialness degree in a formal inference. Based on probability valuation, some concepts of a.e.conclusion, conclusion in probability and conclusion in probability truth of a formula set are introduced, and the relations between these concepts are discussed. Moreover, two different approximate reasoning models based on probability valuation are proposed.
Key wordsProbabilityLogic    ProbabilityValuation    ProbabilityTruthDegree    UncertaintyDegree    ApproximateReasoning   
收稿日期: 2014-10-11     
ZTFLH: O142  
基金资助:湖南省科技计划项目(No.2014FJ3010,2013FJ3032)、湖南省教育厅科学研究重点项目(No.2014A135)、湖南省社会科学基金项目(No.13YBA30)、湖南省重点建设学科、教育部“本科教学工程”地方高校第一批本科专业综合改革试点项目资助
作者简介: 张家录,男,1964年生,硕士,教授,主要研究方向为非经典数理逻辑与近似推理、智能信息处理.E-mail:zjl0735@163.com.陈雪刚(通讯作者),男,1976年生,硕士,副教授,主要研究方向为信息安全、数据挖掘.E-mail:gxcjsj@163.com.吴霞,女,1978年生,硕士,讲师,主要研究方向为非经典数理逻辑与近似推理.
引用本文:   
张家录,陈雪刚,吴霞. 基于命题逻辑概率赋值的近似推理模式*[J]. 模式识别与人工智能, 2015, 28(9): 769-780. ZHANG Jia-Lu , CHEN Xue-Gang , WU Xia. Approximate Reasoning Model Based on Probability Valuation of Propositional Logic. , 2015, 28(9): 769-780.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201509001      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2015/V28/I9/769
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn