HUANG YongQing1,2, HAO GuoSheng1 , LIANG ChangYong2, YANG ShanLin2
1. School of Computer Science and Technology, Xuzhou Normal University, Xuzhou 221011 2. Institute of Computer Network Systems, Hefei University of Technology, Hefei 230009
Abstract:A interactive multiagent genetic algorithm (IMAGA) is proposed. Every agent fixed on a latticepoint in IMAGA interoperates with their neighbors, and the optimal one carries out selflearning to increase the energy. Hence the abilities of global convergence and local search of the algorithm are improved. In every generation, users only need to select the interested individuals instead of evaluating every individual, which simplifies the users' evaluation. The simulations of function optimization and fashion design shows that the proposed algorithm with higher convergence velocity reduces the total times of users' evaluation so as to alleviate user fatigue.
[1] Caldwell C, Johnston V S. Tracking a Criminal Suspect through FaceSpace with a Genetic Algorithm // Proc of the 4th International Conference on Genetic Algorithms. San Mateo, USA: Morgan Kaufmann, 1991: 416421 [2] Ohsaki M, Takagi H. Application of Interactive Evolutionary Computation to Optimal Tuning of Digital Hearing Aids // Proc of the International Conference on Soft Computing. Iizuka, Japan, 1998: 849852 [3] Biles J A. Life with GenJam: Interacting with a Musical IGA // Proc of the International Conference on Systems, Man, and Cybernetics. Tokyo, Japan, 1999, Ⅲ: 652656 [4] Ishino Y, Terano T. Marketing Data Analysis Using Simulated Breeding and Inductive Learning Techniques. Journal of Japan Society for Artificial Intelligence, 1997, 12(1): 121131 [5] Wang Shangfei, Wang Shenghui, Wang Xufa. Improved Interactive Genetic Algorithm Incorporating with SVM and Its Application. Journal of Data Acquisition and Processing, 2003, 18(4): 429433 (in Chinese) (王上飞, 王胜惠, 王熙法. 结合SVM的交互式遗传算法及其应用. 数据采集与处理, 2003, 18(4): 429433) [6] Jiang Shanshan, Cao Xianbing, Wang Xufa. User’s Agent Model and Design Using IGA. Pattern Recognition and Artificial Intelligence, 2004, 17(2): 244249 (in Chinese) (蒋珊珊, 曹先彬, 王煦法. 基于IGA的用户Agent模型与设计. 模式识别与人工智能, 2004, 17(2): 244249) [7] Gong Dunwei, Hao Guosheng, Zhou Yong, et al. Hierarchical Interactive Evolutionary Computation and Its Application. Control and Decision, 2004, 19(10): 11171120,1124 (in Chinese) (巩敦卫, 郝国生, 周 勇,等. 分层交互式进化计算及其应用. 控制与决策, 2004, 19(10): 11171120,1124) [8] Hao Guosheng, Gong Dunwei, Shi Youqun, et al. Method of Replacing the User with Machine in Interactive Genetic Algorithm. Pattern Recognition and Artificial Intelligence, 2006, 19(1): 111115 (in Chinese) (郝国生,巩敦卫,史有群,等.交互式遗传算法的机器代替用户方法.模式识别与人工智能, 2006, 19(1): 111115) [9] Han Jing, Cai Qingsheng. Emergent Intelligence in AER Model. Pattern Recognition and Artificial Intelligence, 2002, 15(2): 134142 (in Chinese) (韩 靖, 蔡庆生. AER模型中的智能涌现. 模式识别与人工智能, 2002, 15(2): 134142) [10] Zhong Weicai, Xue Mingzhi, Liu Jing, et al. MultiAgent Genetic Algorithm Based on AER Model. Pattern Recognition and Artificial Intelligence, 2003, 16(4): 390396 (in Chinese) (钟伟才,薛明志,刘 静,等.基于AER模型的MultiAgent遗传算法.模式识别与人工智能, 2003, 16(4): 390396) [11] Zhong Weicai, Liu Jing, Liu Fang, et al. Combinatorial Optimization Using MultiAgent Evolutionary Algorithm. Chinese Journal of Computers, 2004, 27(10): 13411353 (in Chinese) (钟伟才,刘 静,刘 芳,等.组合优化多智能体进化算法.计算机学报, 2004, 27(10): 13411353)