模式识别与人工智能
2025年4月5日 星期六   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2006, Vol. 19 Issue (4): 455-461    DOI:
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于Gabor特征和增强Fisher模型的目标检测和识别
何毅,杨新
上海交通大学 模式识别与图像处理研究所 上海 200030
Objects Detection and Classification Based onGabor Features and Enhanced Fisher Discriminant Model
HE Yi, YANG Xin
Institute of Pattern Recognition and Image Processing, Shanghai Jiaotong University, Shanghai 200030

全文: PDF (581 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 研究基于Gabor特征和增强Fisher线性判别模型(EFM)的目标检测和识别问题.用Gabor滤波器族对样本和场景图像进行分解,得到高维特征向量.然后利用主成分分析(PCA)将高维特征向量变换到低维空间,根据新的特征幅值检测场景图像中可能存在的车辆目标,并对检测到的目标用EFM进行特征分析后,与样本训练得到的特征进行相似性分类.实验证明本文算法在降低特征维数的同时,仍能较好地识别车辆目标.本文还对车辆个数和位置确定等问题也提出解决方法,并用实验对算法进行验证.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
何毅
杨新
关键词 Gabor滤波器主成分分析(PCA)变换增强Fisher线性判别模型(EFM)k均值算法车辆检测与识别    
Abstract:An approach for detection and classification of objects based on Gabor features and enhanced fisher discriminant model (EFM) is presented in this paper. Decomposed by Gabor filters, the dimensions of Gabor features of object images and models are very large. Principal component analysis (PCA) is used to extract the master components and reduce dimensions of Gabor features. Whether there are vehicle objects or not is primarily justified by the magnitude of the Gabor features. If candidate object is detected, EFM is carried out to compare its features to those of models to determine which one it belongs to-vehicles or back ground. The experiments prove the proposed arithmetic can get good results while reducing the feature dimensions. Furthermore, arithmetics for determining vehicle's number and positions are also discussed. And the experimental results also validate their feasibility.
Key wordsGabor Filters    Principal Component Analysis Transformation    Enhanced Fisher Discriminant Model    kMeans Algorithm    Vehicle Detection and Recognition   
收稿日期: 2004-02-27     
ZTFLH: TP317.4  
作者简介: 何毅,男,1974年生,博士研究生,主要研究方向为运动目标检测、跟踪与识别.E-mail: heyihh@sjtu.edu.cn.杨新,男,1950年生,教授,博士生导师,主要研究方向为医学图像分析、图像偏微分方程的研究、三维动画训练模拟器.
引用本文:   
何毅,杨新. 基于Gabor特征和增强Fisher模型的目标检测和识别[J]. 模式识别与人工智能, 2006, 19(4): 455-461. HE Yi, YANG Xin. Objects Detection and Classification Based onGabor Features and Enhanced Fisher Discriminant Model. , 2006, 19(4): 455-461.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2006/V19/I4/455
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn